
SuperC: Parsing All of C
by Taming the Preprocessor

Paul Gazzillo Robert Grimm
New York University

{gazzillo,rgrimm}@cs.nyu.edu

Abstract
C tools, such as source browsers, bug finders, and automated refac-
torings, need to process two languages: C itself and the preproces-
sor. The latter improves expressivity through file includes, macros,
and static conditionals. But it operates only on tokens, making it
hard to even parse both languages. This paper presents a com-
plete, performant solution to this problem. First, a configuration-
preserving preprocessor resolves includes and macros yet leaves
static conditionals intact, thus preserving a program’s variability.
To ensure completeness, we analyze all interactions between pre-
processor features and identify techniques for correctly handling
them. Second, a configuration-preserving parser generates a well-
formed AST with static choice nodes for conditionals. It forks new
subparsers when encountering static conditionals and merges them
again after the conditionals. To ensure performance, we present a
simple algorithm for table-driven Fork-Merge LR parsing and four
novel optimizations. We demonstrate the effectiveness of our ap-
proach on the x86 Linux kernel.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors; D.2.3 [Software Engineering]: Coding Tools
and Techniques

General Terms Languages, Algorithms

Keywords C, preprocessor, LR parsing, Fork-Merge LR parsing,
SuperC

1. Introduction
Large-scale software development requires effective tool support,
such as source code browsers, bug finders, and automated refac-
torings. This need is especially pressing for C, since it is the lan-
guage of choice for critical software infrastructure, including the
Linux kernel and Apache web server. However, building tools for
C presents a special challenge. C is not only low-level and un-
safe, but source code mixes two languages: the C language proper
and the preprocessor. First, the preprocessor adds facilities lack-
ing from C itself. Notably, file includes (#include) provide rudi-
mentary modularity, macros (#define) enable code transformation
with a function-like syntax, and static conditionals (#if, #ifdef,
and so on) capture variability. Second, the preprocessor is oblivious

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’12, June 11–16, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

to C constructs and operates only on individual tokens. Real-world
C code reflects both points: preprocessor usage is widespread and
often violates C syntax [14].

Existing C tools punt on the full complexity of processing both
languages. They either process one configuration at a time (e.g.,
the Cxref source browser [8], the Astrée bug finder [9], and Xcode
refactorings [10]), rely on a single, maximal configuration (e.g.,
the Coverity bug finder [6]), or build on incomplete heuristics (e.g.,
the LXR source browser [20] and Eclipse refactorings [21]). Pro-
cessing one configuration at a time is infeasible for large pro-
grams such as Linux, which has over 10,000 configuration vari-
ables [38]. Maximal configurations cover only part of the source
code, mainly due to static conditionals with more than one branch.
For example, Linux’ allyesconfig enables less than 80% of the
code blocks contained in conditionals [37]. And heuristic algo-
rithms prevent programmers from utilizing the full expressivity of
C and its preprocessor. Most research focused on parsing the two
languages does not fare better, again processing only some con-
figurations at a time or relying on incomplete algorithms [1, 3–
5, 15, 19, 29, 31, 36, 41].

Only MAPR [33] and TypeChef [25, 26] come close to solving
the problem by using a two-stage approach. First, a configuration-
preserving preprocessor resolves file includes and macros yet
leaves static conditionals intact. Second, a configuration-preserving
parser forks its state into subparsers when encountering static con-
ditionals and then merges them again after conditionals. The parser
also normalizes the conditionals so that they bracket only complete
C constructs and produces a well-formed AST with embedded
static choice nodes. Critically, both stages preserve a C program’s
full variability and thus facilitate analysis and transformation of all
source code. But MAPR and TypeChef still fall short. First, the
MAPR preprocessor is not documented at all, making it impossible
to repeat that result, and the TypeChef preprocessor misses several
interactions between preprocessor features. Second, both systems’
parsers are limited. TypeChef’s LL parser combinator library au-
tomates forking but has seven combinators to merge subparsers
again. This means that developers not only need to reengineer their
grammars with TypeChef’s combinators but also have to correctly
employ the various join combinators. In contrast, MAPR’s table-
driven LR parser engine automates both forking and merging. But
its naive forking strategy results in subparsers exponential to the
number of conditional branches when a constant number of sub-
parsers suffices.

This paper significantly improves on both systems and presents
a rigorous treatment of both configuration-preserving preprocess-
ing and parsing. In exploring configuration-preserving preprocess-
ing, we focus on completeness. We present a careful analysis of all
interactions between preprocessor features and identify techniques
for correctly handling them. Notably, we show that a configuration-
preserving preprocessor needs to hoist conditionals around other

1

preprocessor operations, since preprocessor operations cannot be
composed with conditionals. In exploring configuration-preserving
parsing, we focus on performance. We present a simple algorithm
for Fork-Merge LR (FMLR) parsing, which not only subsumes
MAPR’s algorithm but also has well-defined hooks for optimiza-
tion. We then introduce four such optimizations, which decrease the
number of forked subparsers (the token follow set and lazy shifts),
eliminate duplicate work done by subparsers (shared reduces), and
let subparsers merge as soon as possible (early reduces). Our op-
timizations are not only applied automatically, they also subsume
TypeChef’s specialized join combinators. The result is compelling.
SuperC, our open-source tool1 implementing these techniques, can
fully parse programs with high variability, notably the entire x86
Linux kernel. In contrast, TypeChef can only parse a constrained
version and MAPR fails for most source files.

Like MAPR, our work is inspired by GLR parsing [39], which
also forks and merges subparsers. But whereas GLR parsers match
different productions to the same input fragment, FMLR matches
the same production to different input fragments. Furthermore,
unlike GLR and TypeChef, FMLR parsers can reuse existing LR
grammars and parser table generators; only the parser engine is
new. This markedly decreases the engineering effort necessary for
adapting our work. Compared to previous work, this paper makes
the following contributions:

• An analysis of the challenges involved in parsing C with arbi-
trary preprocessor usage and an empirical quantification for the
x86 version of the Linux kernel.
• A comprehensive treatment of techniques for configuration-

preserving preprocessing and parsing, including novel perfor-
mance optimizations.
• SuperC, an open-source tool for parsing all of C, and its demon-

stration on the x86 Linux kernel.

Overall, our work solves the problem of how to completely and
efficiently parse all of C, 40 years after invention of the language,
and thus lays the foundation for building more powerful C analysis
and transformation tools.

2. The Problem and Solution Approach
C compilers such as gcc process only one variant of the source
code at a time. They pick the one branch of each static conditional
that matches the configuration variables passed to the preprocessor,
e.g., through the -D command line option. Different configuration
variable settings, or configurations, result in different executables,
all from the same C sources. In contrast, other C tools, such as
source browsers, bug finders, and automated refactorings, need to
be configuration-preserving. They need to process all branches of
static conditionals and, for each branch, track the configurations
enabling the branch, i.e., its presence condition. This considerably
complicates C tools except compilers, starting with preprocessing
and parsing.

Figure 1 illustrates SuperC’s configuration-preserving prepro-
cessing and parsing on a simple example from the x86 Linux
kernel (version 2.6.33.3, which is used throughout this paper).
Figure 1a shows the original source code, which utilizes the
three main preprocessor facilities: an include directive on line 1,
macro definitions on lines 3 and 4, and conditional directives
on lines 10 and 14. The code has two configurations, one when
CONFIG_INPUT_MOUSEDEV_PSAUX is defined and one when it is
not defined. After preprocessing, shown in Figure 1b, the header
file has been included (not shown) and the macros have been ex-
panded on lines 6, 7, and 10, but the conditional directives remain

1 http://cs.nyu.edu/xtc/.

1 #include "major.h" // Defines MISC_MAJOR to be 10
2

3 #define MOUSEDEV_MIX 31
4 #define MOUSEDEV_MINOR_BASE 32
5

6 static int mousedev_open(struct inode *inode, struct file *file)
7 {
8 int i;
9

10 #ifdef CONFIG_INPUT_MOUSEDEV_PSAUX
11 if (imajor(inode) == MISC_MAJOR)
12 i = MOUSEDEV_MIX;
13 else
14 #endif
15 i = iminor(inode) - MOUSEDEV_MINOR_BASE;
16

17 return 0;
18 }

(a) The unpreprocessed source.

1 static int mousedev_open(struct inode *inode, struct file *file)
2 {
3 int i;
4

5 #ifdef CONFIG_INPUT_MOUSEDEV_PSAUX
6 if (imajor(inode) == 10)
7 i = 31;
8 else
9 #endif

10 i = iminor(inode) - 32;
11

12 return 0;
13 }

(b) The preprocessed source preserving all configurations.

Function Definition

Compound Statement Function DeclaratorDeclaration Specifiers

Declaration Static Choice

static int mousedev_open(…)

int i

Return Statement

return 0

If Else Statement Expression Stmt.

i = iminor(…) - 32

Expression Stmt.Expression Stmt.Equality Expression

i = iminor(…) - 32i = 31imajor(…) == 10

! CONFIG…XCONFIG…X

(c) Sketch of the AST containing all configurations.

Figure 1. From source code to preprocessed code to AST. The ex-
ample is edited down for simplicity from drivers/input/mousedev.c.

on lines 5 and 9. Finally, in Figure 1c, the parser has generated
an AST containing both configurations with a static choice node
corresponding to the static conditional on lines 5–9 in Figure 1b.

2.1 Interactions Between C and the Preprocessor
The complexity of configuration-preserving C processing stems
from the interaction of preprocessor features with each other and
with the C language. Table 1 summarizes these interactions. Rows
denote language features and are grouped by the three steps of
C processing: lexing, preprocessing, and parsing. The first column
names the feature and the second column describes the implemen-
tation strategy. The remaining columns capture complications aris-
ing from the interaction of features, and the corresponding table

2

http://cs.nyu.edu/xtc/

Language Construct Implementation Surrounded by Contain Contain Multiply- OtherConditionals Conditionals Defined Macros
Lexer

Layout Annotate tokens

Preprocessor

Macro (Un)Definition Use conditional Add multiple entries Do not expand Trim infeasible entries
macro table to macro table until invocation on redefinition

Object-Like Expand all Ignore infeasible Expand nested Get ground truth for
Macro Invocations definitions definitions macros built-ins from compiler
Function-Like Expand all Ignore infeasible Hoist conditionals Expand nested Support differing argument
Macro Invocations definitions definitions around invocations macros numbers and variadics
Token Pasting & Apply pasting & stringification Hoist conditionals around
Stringification token pasting & stringification

File Includes Include and Preprocess under Hoist conditionals Reinclude when guard
preprocess files presence conditions around includes macro is not false

Static Conditionals Preprocess all Conjoin presence conditions Ignore infeasible
branches definitions

Conditional Expressions Evaluate presence Hoist conditionals Preserve order for non-
conditions around expressions boolean expressions

Error Directives Ignore erroneous branches
Line, Warning, & Treat as
Pragma Directives layout

Parser
C Constructs Use FMLR Parser Fork and merge subparsers

Typedef Names Use conditional Add multiple entries Fork subparsers on
symbol table to symbol table ambiguous names

Table 1. Interactions between C preprocessor and language features. Gray entries in the last three columns are newly supported by SuperC.

1 #ifdef CONFIG_64BIT
2 #define BITS_PER_LONG 64
3 #else
4 #define BITS_PER_LONG 32
5 #endif

Figure 2. A multiply-defined macro from include/asm-gener-
ic/bitsperlong.h.

entries indicate how to overcome the complications. Blank entries
indicate impossible interactions. Gray entries highlight interactions
not yet supported by TypeChef. In contrast, SuperC does address
all interactions—besides annotating tokens with layout and with
line, warning, and pragma directives. (We have removed a buggy
implementation of these annotations from SuperC for now.)

Layout. The first step is lexing. The lexer converts raw program
text into tokens, stripping layout such as whitespace and comments.
Since lexing is performed before preprocessing and parsing, it does
not interact with the other two steps. However, automated refactor-
ings, by definition, restructure source code and need to output pro-
gram text as originally written, modulo any intended changes. Con-
sequently, they need to annotate tokens with surrounding layout—
plus, keep sufficient information about preprocessor operations to
restore them as well.

Macro (un)definitions. The second step is preprocessing. It col-
lects macro definitions (#define) and undefinitions (#undef) in a
macro table—with definitions being either object-like

#define name body

or function-like

#define name(parameters) body

1 // In include/linux/byteorder/little_endian.h:
2 #define __cpu_to_le32(x) ((__force __le32)(__u32)(x))
3

4 #ifdef __KERNEL__
5 // Included from include/linux/byteorder/generic.h:
6 #define cpu_to_le32 __cpu_to_le32
7 #endif
8

9 // In drivers/pci/proc.c:
10 _put_user(cpu_to_le32(val), (__le32 __user *) buf);

Figure 3. A macro conditionally expanding to another macro.

Definitions and undefinitions for the same macro may appear
in different branches of static conditionals, creating a multiply-
defined macro that depends on the configuration. Figure 2 shows
such a macro, BITS_PER_LONG, whose definition depends on the
CONFIG_64BIT configuration variable. A configuration-preserving
preprocessor records all definitions in its macro table, tagging each
entry with the presence condition of the #define directive while
also removing infeasible entries on each update. The preprocessor
also records undefinitions, so that it can determine which macros
are neither defined nor undefined and thus free, i.e., configuration
variables. Wherever multiply-defined macros are used, they propa-
gate an implicit conditional. It is as if the programmer had written
an explicit conditional in the first place—an observation first made
by Garrido and Johnson [19].

Macro invocations. Since macros may be nested within each
other, a configuration-preserving preprocessor, just like an ordi-
nary preprocessor, needs to recursively expand each macro. Fur-
thermore, since C compilers have built-in object-like macros, such
as __STDC_VERSION__ to indicate the version of the C standard,
the preprocessor needs to be configured with the ground truth of
the targeted compiler.

3

1 #ifdef __KERNEL__
2 __cpu_to_le32
3 #else
4 cpu_to_le32
5 #endif
6 (val)

(a) After expansion of cpu_to_le32.

1 #ifdef __KERNEL__
2 __cpu_to_le32(val)
3 #else
4 cpu_to_le32(val)
5 #endif

(b) After hoisting the conditional.

1 #ifdef __KERNEL
2 ((__force __le32)(__u32)(val))
3 #else
4 cpu_to_le32(val)
5 #endif

(c) After expansion of __cpu_to_le32.

Figure 4. Preprocessing cpu_to_le32(val) in Fig. 3:10.

Beyond these straightforward issues, a configuration-preserving
preprocessor needs to handle two more subtle interactions. First, a
macro invocation may be surrounded by static conditionals. Con-
sequently, the preprocessor needs to ignore macro definitions that
are infeasible for the presence condition of the invocation site. Sec-
ond, function-like macro invocations may contain conditionals, ei-
ther explicitly in source code or implicitly through multiply-defined
macros. These conditionals can alter the function-like macro invo-
cation by changing its name or arguments, including their number
and values. To preserve the function-like invocation while also al-
lowing for differing argument numbers and variadics (a gcc exten-
sion) in different conditional branches, the preprocessor needs to
hoist the conditionals around the invocation.

Figures 3 and 4 illustrate the hoisting of conditionals. Figure 3
contains a sequence of tokens on line 10, cpu_to_le32(val),
which either expands to an invocation of the function-like macro
__cpu_to_le32, if __KERNEL__ is defined, or denotes the invoca-
tion of the C function cpu_to_le32, if __KERNEL__ is not defined.
Figure 4 shows the three stages of preprocessing the sequence.
First, in 4a, the preprocessor expands cpu_to_le32, which makes
the conditional explicit but also breaks the nested macro invocation
on line 2. Second, in 4b, the preprocessor hoists the conditional
around the entire sequence of tokens, which duplicates (val) in
each branch and thus restores the invocation on line 2. Third, in 4c,
the preprocessor recursively expands __cpu_to_le32 on line 2,
which completes preprocessing for the sequence.

Token-pasting and stringification. Macros may contain two op-
erators that modify tokens: The infix token-pasting operator ##
concatenates two tokens, and the prefix stringification operator #
converts a sequence of tokens into a string literal. The prepro-
cessor simply applies these operators, with one complication:
the operators’ arguments may contain conditionals, either explic-
itly in source code or implicitly via multiply-defined macros. As
for function-like macros, a configuration-preserving preprocessor
needs to hoist conditionals around these operators. Figure 5 illus-
trates this for token-pasting: 5a shows the source code; 5b shows
the result of expanding all macros, including BITS_PER_LONG from
Figure 2; and 5c shows the result of hoisting the conditional out of
the token-pasting.

File includes. To produce complete compilation units, a configu-
ration-preserving preprocessor recursively resolves file includes
(#include). If the directive is nested in a static conditional, the

1 #define uintBPL_t uint(BITS_PER_LONG)
2 #define uint(x) xuint(x)
3 #define xuint(x) __le ## x
4

5 uintBPL_t *p = . . . ;

(a) The macro definitions and invocation.

1 __le ##
2 #ifdef CONFIG_64BIT
3 64
4 #else
5 32
6 #endif
7 *p = . . . ;

(b) After expanding the macros.

1 #ifdef CONFIG_64BIT
2 __le ## 64
3 #else
4 __le ## 32
5 #endif
6 *p = . . . ;

(c) After hoisting the conditional.

Figure 5. A token-pasting example from fs/udf/balloc.c.

preprocessor needs to process the header file under the correspond-
ing presence condition. Furthermore, if a guard macro, which is
traditionally named FILENAME_H and protects against multiple in-
clusion, has been undefined, the preprocessor needs to process the
same header file again. More interestingly, include directives may
contain macros that provide part of the file name. If the macro
in such a computed include is multiply-defined, the preprocessor
needs to hoist the implicit conditional out of the directive, just as
for macro invocations, token-pasting, and stringification.

Conditionals. Static conditionals enable multiple configurations,
so both configuration-preserving preprocessor and parser need to
process all branches. The preprocessor converts static conditionals’
expressions into presence conditions, and when conditionals are
nested within each other, conjoins nested conditionals’ presence
conditions. As described for macro invocations above, this lets
the preprocessor ignore infeasible definitions during expansion of
multiply-defined macros.

However, two issues complicate the conversion of conditional
expressions into presence conditions. First, a conditional expres-
sion may contain arbitrary macros, not just configuration variables.
So the preprocessor needs to expand the macros, which may be
multiply-defined. When expanding a multiply-defined macro, the
preprocessor needs to convert the macro’s implicit conditional into
logical form and hoist it around the conditional expression. For ex-
ample, when converting the conditional expression

BITS_PER_LONG == 32

from kernel/sched.c into a presence condition, the preprocessor
expands the definition of BITS_PER_LONG from Figure 2 and hoists
it around the conditional expression, to arrive at

defined(CONFIG_64BIT) && 64 == 32 \
|| !defined(CONFIG_64BIT) && 32 == 32

which makes testing for CONFIG_64BIT explicit with the defined
operator and simplifies to

!defined(CONFIG_64BIT)

after constant folding.
Second, configuration variables may be non-boolean and condi-

tional expressions may contain arbitrary arithmetic subexpressions,
such as NR_CPUS < 256 (from arch/x86/include/asm/spinlock.h).

4

1 static int (*check_part[])(struct parsed_partitions *) = {
2 #ifdef CONFIG_ACORN_PARTITION_ICS
3 adfspart_check_ICS,
4 #endif
5 #ifdef CONFIG_ACORN_PARTITION_POWERTEC
6 adfspart_check_POWERTEC,
7 #endif
8 #ifdef CONFIG_ACORN_PARTITION_EESOX
9 adfspart_check_EESOX,

10 #endif
11 // 15 more, similar initializers
12 NULL
13 };

Figure 6. An example of a C construct containing an exponential
number of unique configurations from fs/partitions/check.c.

Since there is no known efficient algorithm for comparing arbi-
trary polynomials [24], such subexpressions prevent the preproces-
sor from trimming infeasible configurations. Instead, it needs to
treat non-boolean subexpressions as opaque text and preserve their
branches’ source code ordering, i.e., never omit or combine them
and never move other branches across them.

Other preprocessor directives. The C preprocessor supports
four additional directives, to issue errors (#error) and warnings
(#warning), to instruct compilers (#pragma), and to overwrite
line numbers (#line). A configuration-preserving preprocessor
simply reports errors and warnings, and also terminates for errors
appearing outside static conditionals. More importantly, it treats
conditional branches containing error directives as infeasible and
disables their parsing. Otherwise, it preserves such directives as
token annotations to support automated refactorings.

C constructs. The third and final step is parsing. The preprocessor
produces entire compilation units, which may contain static con-
ditionals but no other preprocessor operations. The configuration-
preserving parser processes all branches of each conditional by
forking its internal state into subparsers and merging the subparsers
again after the conditional. This way, it produces an AST contain-
ing all configurations, with static choice nodes for conditionals.

One significant complication is that static conditionals may still
appear between arbitrary tokens, thus violating C syntax. However,
the AST may only contain nodes representing complete C con-
structs. To recognize C constructs with embedded configurations,
the parser may require a subparser per configuration. For example,
the statement on lines 5–10 in Figure 1b has two configurations and
requires two subparsers. The parser may also parse tokens shared
between configurations several times. In the example, line 10 is
parsed twice, once as part of the if-then-else statement and once
as a stand-alone expression statement. This way, the parser hoists
conditionals out of C constructs, much like the preprocessor hoists
them out of preprocessor operations.

Using a subparser per embedded configuration is acceptable
for most declarations, statements, and expressions. They have a
small number of terminals and nonterminals and thus can contain
only a limited number of configurations. However, if a C construct
contains repeated nonterminals, this can lead to an exponential
blow-up of configurations and therefore subparsers. For example,
the array initializer in Figure 6 has 218 unique configurations. Using
a subparser for each configuration is clearly infeasible and avoiding
it requires careful optimization of the parsing algorithm.

Typedef names. A final complication results from the fact that
C syntax is context-sensitive [35]. Depending on context, names
can either be typedef names, i.e., type aliases, or they can be object,
function, and enum constant names. Furthermore, the same code
snippet can have fundamentally different semantics, depending on
names. For example, T * p; is either a declaration of p as a pointer

Algorithm 1 Hoisting Conditionals

1: procedure Hoist(c, τ)
2: B Initialize a new conditional with an empty branch.
3: C ← [(c, •)]
4: for all a ∈ τ do
5: if a is a language token then
6: B Append a to all branches in C.
7: C ← [(ci, τia) | (ci, τi) ∈ C]
8: else B a is a conditional.
9: B Recursively hoist conditionals in each branch.

10: B← [b | b ∈ Hoist(ci, τi) and (ci, τi) ∈ a]
11: B Combine with already hoisted conditionals.
12: C ← C × B
13: end if
14: end for
15: return C
16: end procedure

to type T or an expression statement that multiplies the variables
T and p, depending on whether T is a typedef name. C parsers
usually employ a symbol table to disambiguate names [22, 35].
In the presence of conditionals, however, a name may be both.
Consequently, a configuration-preserving parser needs to maintain
configuration-dependent symbol table entries and fork subparsers
when encountering an implicit conditional due to an ambiguously
defined name.

3. The Configuration-Preserving Preprocessor
SuperC’s configuration-preserving preprocessor accepts C files,
performs all operations while preserving static conditionals, and
produces compilation units. While tedious to engineer, its function-
ality mostly follows from the discussion in the previous section.
Two features, however, require further elaboration: the hoisting of
conditionals around preprocessor operations and the conversion of
conditional expressions into presence conditions.

3.1 Hoisting Static Conditionals
Preprocessor directives as well as function-like macro invocations,
token-pasting, and stringification may only contain ordinary lan-
guage tokens. Consequently, they are ill-defined in the presence
of implicit or explicit embedded static conditionals. To perform
these preprocessor operations, SuperC’s configuration-preserving
preprocessor needs to hoist conditionals, so that only ordinary to-
kens appear in the branches of the innermost conditionals.

Algorithm 1 formally defines Hoist. It takes a presence condi-
tion c and a list of ordinary tokens and entire conditionals τ under
the presence condition. Each static conditional C, in turn, is treated
as a list of branches

C := [(c1, τ1), . . . , (cn, τn)]

with each branch having a presence condition ci and a list of tokens
and nested conditionals τi. Line 3 initializes the result C with an
empty conditional branch. Lines 4–14 iterate over the tokens and
conditionals in τ, updating C as necessary. And line 15 returns
the result C. Lines 5–7 of the loop handle ordinary tokens, which
are present in all embedded configurations and are appended to
all branches in C, as illustrated for (val) in Figure 4b and for
__le ## in Figure 5c. Lines 8–13 of the loop handle conditionals
by recursively hoisting any nested conditionals in line 10 and then
combining the result B with C in line 12. The cross product for
conditionals in line 12 is defined as

C × B := [(ci ∧ c j, τiτ j) | (ci, τi) ∈ C and (c j, τ j) ∈ B]

5

and generalizes line 7 by combining every branch in C with every
branch in B.

SuperC uses Hoist for all preprocessor operations that may
contain conditionals except for function-like macro invocations.
The problem with the latter is that, to call Hoist, the preprocessor
needs to know which tokens and conditionals belong to an oper-
ation. But different conditional branches of a function-like macro
invocation may contain different macro names and numbers of ar-
guments, and even additional, unrelated tokens. Consequently, Su-
perC uses a version of Hoist for function-like macro invocations
that interleaves parsing with hoisting. For each conditional branch,
it tracks parentheses and commas, which change the parsing state
of the invocation. Once all variations of the invocation have been
recognized across all conditional branches, each invocation is sep-
arately expanded. If a variation contains an object-like or undefined
macro, the argument list is left in place, as illustrated in Fig. 4c:4.

3.2 Converting Conditional Expressions
To reason about presence conditions, SuperC converts conditional
expressions into Binary Decision Diagrams (BDDs) [12, 42],
which are an efficient, symbolic representation of boolean func-
tions. BDDs include support for boolean constants, boolean vari-
ables, as well as negation, conjunction, and disjunction. On top
of that, BDDs are canonical: Two boolean functions are the same
if and only if their BDD representations are the same [12]. This
makes it not only possible to directly combine BDDs, e.g., when
tracking the presence conditions of nested or hoisted condition-
als, but also to easily compare two BDDs for equality, e.g., when
testing for an infeasible configuration by evaluating c1 ∧ c2 = false.

Before converting a conditional expression into a BDD, SuperC
expands any macros outside invocations of the defined opera-
tor, hoists multiply-defined macros around the expression, and per-
forms constant folding. The resulting conditional expression uses
negations, conjunctions, and disjunctions to combine four types of
subexpressions: constants, free macros, arithmetic expressions, and
defined invocations. SuperC converts each of these subexpres-
sions into a BDD as follows and then combines the resulting BDDs
with the necessary logical operations:

1. A constant translates to false if zero and to true otherwise.

2. A free macro translates to a BDD variable.

3. An arithmetic subexpression also translates to a BDD variable.

4. defined(M) translates into the disjunction of presence condi-
tions under which M is defined. However, if M is free:

(a) If M is a guard macro, defined(M) translates to false.

(b) Otherwise, defined(M) translates to a BDD variable.

Just like gcc, Case 4a treats M as a guard macro, if a header file
starts with a conditional directive that tests !defined(M) and is
followed by #defineM, and the matching #endif ends the file. To
ensure that repeated occurrences of the same free macro, arithmetic
expression, or defined(M) for free M translate to the same BDD
variable, SuperC maintains a mapping between these expressions
and their BDD variables. In the case of arithmetic expressions, it
normalizes the text by removing whitespace and comments.

4. The Configuration-Preserving Parser
SuperC’s configuration-preserving FMLR parser builds on LR
parsing [2, 28], a bottom-up parsing technique. To recognize the
input, LR parsers maintain an explicit parser stack, which contains
terminals, i.e., tokens, and nonterminals. On each step, LR parsers
perform one of four actions: (1) shift to copy a token from the in-
put onto the stack and increment the parser’s position in the input,
(2) reduce to replace one or more top-most stack elements with

Algorithm 2 Fork-Merge LR Parsing

1: procedure Parse(a0)
2: Q.init((true, a0, s0)) B The initial subparser for a0.
3: while Q , ∅ do
4: p← Q.pull() B Step the next subparser.
5: T ← Follow(p.c, p.a)
6: if |T | = 1 then
7: B Do an LR action and reschedule the subparser.
8: Q.insert(LR(T (1), p))
9: else B The follow-set contains several tokens.

10: B Fork subparsers and reschedule them.
11: Q.insertAll(Fork(T, p))
12: end if
13: Q← Merge(Q)
14: end while
15: end procedure

a nonterminal, (3) accept to successfully complete parsing, and
(4) reject to terminate parsing with an error. The choice of action
depends on both the next token in the input and the parser stack.
To ensure efficient operation, LR parsers use a deterministic finite
control and store the state of the control with each stack element.

Compared to top-down parsing techniques, such as LL [34]
and PEG [7, 16], LR parsers are an attractive foundation for
configuration-preserving parsing for three reasons. First, LR parsers
make the parsing state explicit, in form of the parser stack. Con-
sequently, it is easy to fork the parser state on a static conditional,
e.g., by representing the stack as a singly-linked list and by creating
new stack elements that point to the shared remainder. Second, LR
parsers are relatively straight-forward to build, since most of the
complexity lies in generating the parsing tables, which determine
control transitions and actions. In fact, SuperC uses LALR parsing
tables [13] produced by an existing parser generator. Third, LR
parsers support left-recursion in addition to right-recursion, which
is helpful for writing programming language grammars.

4.1 Fork-Merge LR Parsing
Algorithm 2 formalizes FMLR parsing. It uses a queue Q of LR
subparsers p. Each subparser p := (c, a, s) has a presence condi-
tion c, a next token or conditional a, which is also called the head,
and an LR parser stack s. Each subparser recognizes a distinct con-
figuration, i.e., the different presence conditions p.c are mutually
exclusive, and all subparsers together recognize all configurations,
i.e., the disjunction of all their presence conditions is true. Q is a
priority queue, ordered by the position of the head p.a in the input.
This ensures that subparsers merge at the earliest opportunity, as no
subparser can outrun the other subparsers.

Line 2 initializes the queue Q with the subparser for the initial
token or conditional a0, and lines 3–14 step individual subparsers
until the queue is empty, i.e., all subparsers have accepted or re-
jected. On each iteration, line 4 pulls the earliest subparser p from
the queue. Line 5 computes the token follow-set for p.c and p.a,
which contains pairs (ci, ai) of ordinary language tokens ai and their
presence conditions ci. The follow-set computation is detailed in
Section 4.2. Intuitively, it captures the actual variability of source
code and includes the first language token on each path through
static conditionals from the current input position. If the follow-
set contains a single element, e.g., p.a is an ordinary token and
T = { (p.c, p.a) }, lines 6–8 perform an LR action on the only ele-
ment T (1) and the subparser p. Unless the LR action is accept or
reject, line 8 also reschedules the subparser. Otherwise, the follow-
set contains more than one element, e.g., p.a is a conditional. Since
each subparser can only perform LR actions one after another,

6

Algorithm 3 The Token Follow-Set

1: procedure Follow(c, a)
2: T ← ∅ B Initialize the follow-set.
3: procedure First(c, a)
4: loop
5: if a is a language token then
6: T ← T ∪ {(c, a)}
7: return false
8: else B a is a conditional.
9: cr ← false B Initialize remaining condition.

10: for all (ci, τi) ∈ a do
11: if τi = • then
12: cr ← cr ∨ c ∧ ci

13: else
14: cr ← cr ∨ First(c ∧ ci, τi(1))
15: end if
16: end for
17: if cr = false or a is last element in branch then
18: return cr

19: end if
20: c← cr

21: a← next token or conditional after a
22: end if
23: end loop
24: end procedure
25: loop
26: c← First(c, a)
27: if c = false then return T end if B Done.
28: a← next token or conditional after a
29: end loop
30: end procedure

lines 9–12 fork a subparser for each presence condition and token
(ci, ai) ∈ T and then reschedule the subparsers. Finally, line 13
tries to merge subparsers again. Subparsers may merge if they have
the same head and LR stack, which ensures that conditionals are
hoisted out of C constructs.

4.2 The Token Follow-Set
A critical challenge for configuration-preserving parsing is which
subparsers to create. The naive strategy, employed by MAPR, forks
a subparser for every branch of every static conditional. But condi-
tionals may have empty branches and even omit branches, like the
implicit else branch in Figure 1. Furthermore, they may be directly
nested within conditional branches, and they may directly follow
other conditionals. Consequently, the naive strategy forks a great
many unnecessary subparsers and is intractable for complex C pro-
grams such as Linux. Instead, FMLR relies on the token follow-
set to capture the source code’s actual variability, thus limiting the
number of forked subparsers.

Algorithm 3 formally defines Follow. It takes a presence con-
dition c and a token or conditional a, and it returns the follow-
set T for a, which contains pairs (ci, ai) of ordinary tokens ai and
their presence conditions ci. By construction, each token ai appears
exactly once in T ; consequently, the follow-set is ordered by the
tokens’ positions in the input. Line 2 initializes T to the empty
set. Lines 3–24 define the nested procedure First. It scans well-
nested conditionals and adds the first ordinary token and presence
condition for each configuration to T . It then returns the presence
condition of any remaining configuration, i.e., conditional branches
that are empty or implicit and thus do not contain ordinary tokens.
Lines 25–29 repeatedly call First until all configurations have been

Fork(T, p) := { (c, a, p.s) | (c, a) ∈ T }
Merge(Q) := { (

∨
p.c, a, s) | a = p.a and s = p.s ∀p ∈ Q }

(a) Basic forking and merging.

Fork(T, p) := { (H, p.s) | H ∈ Lazy(T, p) ∪ Shared(T, p) }
Lazy(T, p) :=

{⋃
{(c, a)} | Action(a, p.s) = ‘shift’ ∀(c, a) ∈ T

}
Shared(T, p) :={⋃

{(c, a)} | Action(a, p.s) = ‘reduce n’ ∀(c, a) ∈ T
}

(b) Optimized forking.

Figure 7. The definitions of fork and merge.

covered, i.e., the remaining configuration is false. Line 28 moves on
to the next token or conditional, while also stepping out of condi-
tionals. In other words, if the token or conditional a is the last ele-
ment in the branch of a conditional, which, in turn, may be the last
element in the branch of another conditional (and so on), line 28
updates a with the first element after the conditionals.

First does the brunt of the work. It takes a token or conditional a
and presence condition c. Lines 4–23 then iterate over the elements
of a conditional branch or at a compilation unit’s top-level, starting
with a. Lines 5–7 handle ordinary language tokens. Line 6 adds the
token and presence condition to the follow-set T . Line 7 terminates
the loop by returning false, indicating no remaining configuration.
Lines 8–22 handle conditionals. Line 9 initializes the remaining
configuration cr to false. Lines 10–16 then iterate over the branches
of the conditional a, including any implicit branch. If a branch is
empty, line 12 adds the conjunction of its presence condition ci and
the overall presence condition c to the remaining configuration cr.
Otherwise, line 14 recurses over the branch, starting with the first
token or conditional τi(1), and adds the result to the remaining con-
figuration cr. If, after iterating over the branches of the conditional,
the remaining configuration is false or there are no more tokens or
conditionals to process, lines 17–19 terminate First’s main loop
by returning cr. Finally, lines 20–21 set up the next iteration of the
loop by updating c with the remaining configuration and a with the
next token or conditional.

4.3 Forking and Merging
Figure 7a shows the definitions of Fork and Merge. Fork creates
new subparsers from a token follow-set T to replace a subparser p.
Each new subparser has a different presence condition c and to-
ken a from the follow-set T but the same LR stack p.s. Conse-
quently, it recognizes a more specific configuration than the origi-
nal subparser p. Merge has the opposite effect. It takes the priority
queue Q and combines any subparsers p ∈ Q that have the same
head and LR stack. Such subparsers are redundant: they will nec-
essarily perform the same parsing actions for the rest of the input,
since FMLR, like LR, is deterministic. Each merged subparser re-
places the original subparsers; its presence condition is the disjunc-
tion of the original subparsers’ presence conditions. Consequently,
it recognizes a more general configuration than any of the origi-
nal subparsers. Merge is similar to GLR’s local ambiguity pack-
ing [39], which also combines equivalent subparsers, except that
FMLR subparsers have presence conditions.

4.4 Optimizations
In addition to the token follow-set, FMLR relies on three more opti-
mizations to contain the state explosion caused by static condition-
als: early reduces, lazy shifts, and shared reduces. Early reduces are
a tie-breaker for the priority queue. When subparsers have the same
head a, they favor subparsers that will reduce over subparsers that
will shift. Since reduces, unlike shifts, do not change a subparser’s

7

head, early reduces prevent subparsers from outrunning each other
and create more opportunities for merging subparsers.

While early reduces seek to increase merge opportunities, lazy
shifts and shared reduces seek to decrease the number and work of
forked subparsers, respectively. First, lazy shifts delay the forking
of subparsers that will shift. They are based on the observation that
a sequence of static conditionals with empty or implicit branches,
such as the array initializer in Figure 6, often results in a follow-
set, whose tokens all require a shift as the next LR action. However,
since FMLR steps subparsers by position of the head, the subparser
for the first such token performs its shift (plus other LR actions) and
can merge again before the subparser for the second such token can
even perform its shift. Consequently, it is wasteful to eagerly fork
the subparsers. Second, shared reduces reduce a single stack for
several heads at the same time. They are based on the observation
that conditionals often result in a follow-set, whose tokens all
require a reduce to the same nonterminal; e.g., both tokens in the
follow-set of the conditional in Figure 1b reduce the declaration on
line 3. Consequently, it is wasteful to first fork the subparsers and
then reduce their stacks in the same way.

Figure 7b formally defines both lazy shifts and shared reduces.
Both optimizations result in multi-headed subparsers p := (H, s),
which have more than one head and presence condition

H := { (c1, a1), . . . , (cn, an) }

Just as for the follow-set, each token ai appears exactly once in H
and the set is ordered by the tokens’ positions in the input. Algo-
rithm 2 generalizes to multi-headed subparsers as follows. It pri-
oritizes a multi-headed subparser by its earliest head a1. Next, by
definition of optimized forking, the follow-set of a multi-headed
subparser (H, s) is H. However, the optimized version of the FMLR
algorithm always performs an LR operation on a multi-headed
subparser, i.e., treats it as if the follow-set contains a single ordi-
nary token. If the multi-headed subparser will shift, it forks off a
single-headed subparser p′ for the earliest head, shifts p′, and then
reschedules both subparsers. If the multi-headed subparser will re-
duce, it reduces p and immediately recalculates Fork(H, p), since
the next LR action may not be the same reduce for all heads any-
more. Finally, it merges multi-headed subparsers p if they have
the same head { (, a1), . . . , (, an) } = p.H and the same LR
stack s = p.s; it computes the merged parser’s presence condi-
tions as the disjunction of the original subparser’s corresponding
presence conditions ci =

∨
p.H(i).c.

4.5 Putting It All Together
We are now ready to illustrate FMLR on the array initializer in
Figure 6. For simplicity, we treat NULL as a token and ignore
that the macro usually expands to ((void *)0). For concision,
we subscript each subparser and set symbol with its current line
number in Figure 6. We also use bn to denote the boolean variable
representing the conditional expression on line n, e.g.,

b2 ∼ defined(CONFIG_ACORN_PARTITION_ICS)

Finally, we refer to one iteration through FMLR’s main loop in
Algorithm 2 as a step.

Since line 1 in Figure 6 contains only ordinary tokens, FMLR
behaves like an LR parser, stepping through the tokens with a sin-
gle subparser p1. Upon reaching line 2, FMLR computes Follow
for the conditional on lines 2–4. To this end, First iterates over
the conditionals and NULL token in the initializer list by updat-
ing a in Alg. 3:21. On each iteration besides the last, First also
recurses over the branches of a conditional, including the implicit
else branch. As a result, it updates the remaining configuration in
Alg. 3:12 with a conjunction of negated conditional expressions,
yielding the follow-set

T2 = { (b2, adfspart_check_ICS),
(¬b2 ∧ b5, adfspart_check_POWERTEC),
. . . , (¬b2 ∧ ¬b5 ∧ ¬b8 ∧ . . . , NULL) }

Since all tokens in T2 reduce the empty input to the InitializerList
nonterminal, shared reduces turns p2 into a multi-headed subparser
with H2 = T2. FMLR then steps p3. It reduces the subparser, which
does not change the heads, i.e., H3 = H2, but modifies the stack to

p3.s = . . . { InitializerList

It then calculates Fork(H3, p3); since all tokens in H3 now shift,
lazy shifts produces the same multi-headed subparser. FMLR
steps p3 again. It forks off a single-headed subparser p′3 and shifts
the identifier token on line 3 onto its stack. Next, FMLR steps p′3.
It shifts the comma token onto the stack, which yields

p′3.s = . . . { InitializerList adfspart_check_ICS ,

and updates the head p′3.a to the conditional on lines 5–7. FMLR
steps p′5 again, computing the subparser’s follow-set as

T ′5 = { (b2 ∧ b5, adfspart_check_POWERTEC),
. . . , (b2 ∧ ¬b5 ∧ ¬b8 ∧ . . . , NULL) }

Since all tokens in T ′5 reduce the top three stack elements to an Ini-
tializerList, shared reduces turns p′5 into a multi-headed subparser
with H′5 = T ′5. At this point, both p6 and p′6 are multi-headed sub-
parsers with the same heads, though their stacks differ. Due to early
reduces, FMLR steps p′6. It reduces the stack, which yields the same
stack as that of p6, and calculates Fork, which does not change p′6
due to lazy shifts. It then merges the two multi-headed subparsers,
which disjoins b2 with ¬b2 for all presence conditions and thus
eliminates b2 from H6. FMLR then repeats the process of forking,
shifting, reducing, and merging for the remaining 17 conditionals
until a single-headed subparser p completes the array initializer on
lines 12–13. That way, FMLR parses 218 distinct configurations
with only 2 subparsers!

5. Pragmatics
Having covered the overall approach and algorithms, we now turn
to the pragmatics of building a real-world tool. SuperC imple-
ments the three steps of parsing all of C—lexing, preprocessing,
and parsing—in Java. We engineered both preprocessor and parser
from scratch, but rely on JFlex [27] to generate the lexer and on
Bison [17] to generate the LALR parser tables. Since Bison gener-
ates C headers, we wrote a small C program that converts them to
Java. As inputs to JFlex and Bison, we reuse Roskind’s tokeniza-
tion rules and grammar for C [35], respectively; we added support
for common gcc extensions. To parse conditional expressions, the
preprocessor also reuses a C expression grammar distributed with
the Rats! parser generator [22]. To facilitate future retargeting to
other languages, SuperC’s preprocessor accesses tokens through an
interface that hides source language aspects not relevant to prepro-
cessing. Furthermore, the preprocessor does not pass conditional
directives to the parser but rather replaces each directive’s tokens
with a single special token that encodes the conditional operation
and references the conditional expression as a BDD. Finally, the
parser is not only configured with the parser tables but also with
plug-ins that control AST construction (Section 5.1) and context
management (Section 5.2). To support these plug-ins, each sub-
parser stack element has a field for the current semantic value and
each subparser has a field for the current context.

5.1 Building Abstract Syntax Trees
To simplify AST construction, SuperC includes an annotation fa-
cility that eliminates explicit semantic actions in most cases. Devel-
opers simply add special comments next to productions. Our AST

8

tool then extracts these comments and generates the corresponding
Java plug-in code, which is invoked when reducing a subparser’s
stack. By default, SuperC creates an AST node that is an instance
of a generic node class, is named after the production, and has the
semantic values of all terminals and nonterminals as children. Four
annotations override this default. (1) layout omits the production’s
value from the AST. It is used for punctuation. (2) passthrough
reuses a child’s semantic value, if it is the only child in an alter-
native. It is particularly useful for expressions, whose productions
tend to be deeply nested for precedence (17 levels for C). (3) list
encodes the semantic values of a recursive production as a linear
list. It is necessary because LR grammars typically represent repe-
titions as left-recursive productions. (4) action executes arbitrary
Java code instead of automatically generating an AST node.

A fifth annotation, complete, determines which productions
are complete syntactic units. SuperC merges only subparsers with
the same, complete nonterminal on top of their stacks; while merg-
ing, it combines the subparsers’ semantic values with a static choice
node. The selection of complete syntactic units requires care. Treat-
ing too many productions as complete forces downstream tools
to handle static choice nodes in too many different language con-
structs. Treating too few productions as complete may result in an
exponential subparser number in the presence of embedded config-
urations, e.g., the array initializer in Figure 6. SuperC’s C grammar
tries to strike a balance by treating not only declarations, defini-
tions, statements, and expressions as complete syntactic units, but
also members in commonly configured lists, including function pa-
rameters, struct and union members, as well as struct, union,
and array initializers.

5.2 Managing Parser Context
SuperC’s context management plug-in enables the recognition of
context-sensitive languages, including C, without modifying the
FMLR parser. The plug-in has four callbacks: (1) reclassify
modifies the token follow-set by changing or adding tokens. It is
called after computing the follow-set, i.e., line 5 in Algorithm 2.
(2) forkContext creates a new context and is called during fork-
ing. (3) mayMerge determines whether two contexts allow merging
and is called while merging subparsers. (4) mergeContexts actu-
ally combines two contexts and is also called while merging.

SuperC’s C plug-in works as follows. Its context is a symbol
table that tracks which names denote values or types under which
presence conditions and in which C language scopes. Productions
that declare names and enter/exit C scopes update the symbol
table through helper productions that are empty but have semantic
actions. reclassify checks the name of each identifier, which
is the only token generated for names by SuperC’s lexer. If the
name denotes a type in the current scope, reclassify replaces
the identifier with a typedef name. If the name is ambiguously
defined under the current presence condition, it instead adds the
typedef name to the follow-set. This causes the FMLR parser to
fork an extra subparser on such names, even though there is no
explicit conditional. forkContext duplicates the current symbol
table scope. mayMerge allows merging only at the same scope
nesting level. Finally, mergeContexts combines any symbol table
scopes not already shared between the two contexts.

6. Evaluation
To evaluate our work, we explore three questions. Section 6.1 ex-
amines how prevalent preprocessor usage is in real-world code.
It measures preprocessor directives and feature interactions in the
Linux kernel. Section 6.2 examines how effective FMLR is at con-
taining the state explosion caused by static conditionals. It mea-
sures the number of subparsers necessary for parsing Linux and
also compares to our reimplementation of MAPR. Section 6.3 ex-

Total C Files Headers
LoC 5,600,227 85% 15%
All Directives 532,713 34% 66%
#define 366,424 16% 84%
#if, #ifdef, #ifndef 38,198 58% 42%
#include 86,604 85% 15%

(a) Number of directives compared to lines of code (LoC).

Header Name C Files That Include Header
include/linux/module.h 3,741 (49%)
include/linux/init.h 2,841 (37%)
include/linux/kernel.h 2,567 (33%)
include/linux/slab.h 1,800 (23%)
include/linux/delay.h 1,505 (20%)

(b) The top five most frequently included headers.

Table 2. A developer’s view of x86 Linux preprocessor usage.

amines how well SuperC performs. It measures the latency for
parsing Linux and also compares to TypeChef. We focus on Linux
for three reasons: (a) it is large and complex, (b) it has many de-
velopers with differing coding styles and skills, and (c) it is subject
to staggering performance and variability requirements. However,
since the Linux build system does not use the preprocessor for set-
ting architecture-specific header files, we evaluate only the x86 ver-
sion of the kernel. In summary, our evaluation demonstrates that
Linux provides a cornucopia of preprocessor usage, that FMLR
requires less than 40 subparsers for Linux whereas MAPR fails
on most source files, and that SuperC performs well enough, out-
running TypeChef by more than a factor of four and out-scaling it
for complex compilation units.

6.1 Preprocessor Usage and Interactions
Table 2 provides a developer’s view of preprocessor usage in the
x86 Linux kernel. The data was collected by running cloc, grep,
and wc on individual C and header files. Table 2a compares the
number of preprocessor directives to lines of code (LoC), exclud-
ing comments and empty lines. Even this simple analysis demon-
strates extensive preprocessor usage: almost 10% of all LoC are
preprocessor directives. Yet, when looking at C files, preprocessor
usage is not nearly as evident for two reasons. First, macro invoca-
tions look like C identifiers and C function calls; they may also be
nested in other macros. Consequently, they are not captured by this
analysis. Second, C programs usually rely on headers for common
definitions, i.e., as a poor man’s module system. The data corrobo-
rates this. 66% of all directives and 84% of macro definitions are in
header files. Furthermore, 15% of include directives are in header
files, resulting in long chains of dependencies. Finally, some head-
ers are directly included in thousands of C files (and preprocessed
for each one). Table 2b shows the top five most frequently included
headers; module.h alone is included in nearly half of all C files.

Table 3 provides a tool’s view of preprocessor usage in the x86
Linux kernel. The data was collected by instrumenting SuperC and
applying our tool on compilation units, i.e., C files plus the clo-
sure of included headers. It captures information not available in
the simple counts of Table 2, including macro invocations. Table 3
loosely follows the organization of Table 1. Each row shows a pre-
processor or C language construct. The first column names the con-
struct, the second column shows its usage, and the third and fourth
columns show its interactions. Each entry is the distribution in three
percentiles, “50th · 90th · 100th,” across compilation units. Table 3
confirms that preprocessor usage is extensive. It also confirms that
most interactions identified in Section 2 occur in real-world C code.

9

Language Construct Total Interaction with Conditionals Other Interactions

Macro Definitions 34k · 45k · 122k Contained in 34k · 45k · 122k Redefinitions 23k · 33k · 111k

Macro Invocations 98k · 140k · 381k Trimmed 16k · 21k · 70k Nested invocations 64k · 97k · 258k
Hoisted 154 · 292 · 876 Built-in macros 135

Token-Pasting 4k · 6k · 22k Hoisted 0 · 0 · 180
Stringification 6k · 8k · 23k Hoisted 361 · 589 · 6,082

File Includes 1,608 · 2,160 · 5,939 Hoisted 33 · 55 · 165 Computed includes 34 · 56 · 168
Reincluded headers 1,185 · 1,743 · 5,488

Static Conditionals 8k · 10k · 29k Hoisted 331 · 437 · 1,258 With non-boolean 509 · 713 · 1,975Max. depth 28 · 33 · 40 expressions
Error Directives 42 · 57 · 168
C Declarations & 34k · 49k · 127k Containing 722 · 896 · 2,746Statements

Typedef Names 748 · 1,028 · 2,554 Ambiguously 0 · 0 · 0defined names

Table 3. A tool’s view of x86 Linux preprocessor usage. Entries show percentiles across compilation units: 50th · 90th · 100th.

The vast majority of measured preprocessor interactions involve
macros. First, almost all macro definitions are contained in static
conditionals, i.e., any difference is hidden by rounding to the near-
est thousand. This is due to most definitions occurring in header
files and most header files, in turn, containing a single static condi-
tional that protects against multiple inclusion. Second, over 60% of
macro invocations appear from within other macros; e.g., the me-
dian for total macro invocations is 98k, while the median for nested
invocations is 64k. This makes it especially difficult to fully ana-
lyze macro invocations without running the preprocessor, e.g., by
inspecting source code. While not nearly as frequent as interactions
involving macros, static conditionals do appear within function-
like macro invocations, token-pasting and stringification operators,
file includes, as well as conditional expressions. Consequently, a
configuration-preserving preprocessor must hoist such condition-
als. Similarly, non-boolean expressions do appear in conditionals
and the preprocessor must preserve them. However, two exceptions
are notable. Computed includes are very rare and ambiguously-
defined names do not occur at all, likely because both make it very
hard to reason about source code.

6.2 Subparser Counts
According to Table 3, most compilation units contain thousands of
static conditionals. This raises the question of whether recognizing
C code across conditionals is even feasible. Two factors determine
feasibility: (1) the breadth of conditionals, which forces the fork-
ing of subparsers, and (2) the incidence of partial C constructs in
conditionals, which prevents the merging of subparsers. The num-
ber of subparsers per iteration of FMLR’s main loop in Alg. 2:3–14
precisely captures the combined effect of these two factors.

Figure 8 shows the cumulative distribution of subparser counts
per FMLR iteration for the x86 Linux kernel under different opti-
mization levels: 8a identifies the maxima and 8b characterizes the
overall shape. For comparison, the former also includes MAPR. We
reimplemented MAPR by modifying SuperC to optionally fork a
subparser for every conditional branch instead of using the token
follow-set. We also reimplemented MAPR’s tie-breaker for the pri-
ority queue, which favors the subparser with the larger stack [33].
Figure 8 demonstrates that MAPR is intractable for Linux, trigger-
ing a kill-switch at 16,000 subparsers for 98% of all compilation
units. In contrast, the token follow-set alone makes FMLR feasi-
ble for the entire x86 Linux kernel. The lazy shifts, shared reduces,
and early reduces optimizations further decrease subparser counts,
by up to a factor of 12. They also help keep the AST smaller: fewer
forked subparsers means fewer static choice nodes in the tree, and

Subparsers
Optimization Level 99th % Max.
Shared, Lazy, & Early 21 39
Shared & Lazy 22 39
Shared 21 77
Lazy 32 468
Follow-Set Only 33 468
MAPR & Largest First >16,000 on 98% of comp. units
MAPR >16,000 on 98% of comp. units

(a) The maximum number across optimizations.

 0

 25

 50

 75

 100

 0 5 10 15 20 25 30 35 40

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Number of Subparsers

Shared
Shared, Lazy, & Early;

similarly Shared & Lazy

Follow-Set Only; similarly Lazy

(b) The cumulative distribution across optimizations.

Figure 8. Subparser counts per main FMLR loop iteration.

earlier merging means more tree fragments outside static choice
nodes, i.e., shared between configurations.

6.3 Performance
Both SuperC and TypeChef run on the Java virtual machine, which
enables a direct performance comparison. All of SuperC and Type-
Chef’s preprocessor are written in Java, whereas TypeChef’s parser
is written in Scala. Running either tool on x86 Linux requires
some preparation. (1) As discussed in Section 2, both tools need
to be configured with gcc’s built-in macros. SuperC automates this
through its build system; TypeChef’s distribution includes manu-
ally generated files for different compilers and versions. (2) Both
tools require a list of C files identifying the kernel’s compilation
units. We reuse the list of 7,665 C files distributed with Type-

10

 0

 25

 50

 75

 100

 0 5 10 15 20 25 30 35 40

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Latency in Seconds

TypeChef

Max: 10.41s
Max: 930.68s

Total Time
SuperC
TypeChef

12.52hrs
52.94hrs

SuperC

Figure 9. SuperC and TypeChef latency per compilation unit.

Chef. Kästner et al. assembled it by analyzing Linux’ configuration
database [26]. (3) SuperC needs to be configured with four defi-
nitions of non-boolean macros. We discovered the four macros by
comparing the result of running gcc’s preprocessor, i.e., gcc -E,
under the allyesconfig configuration on the 7,665 C files with
the result of running it on the output of SuperC’s configuration-
preserving preprocessor for the same files. With those four defini-
tions in place, the results are identical modulo whitespace. This
comparison also provides us with high assurance that SuperC’s
preprocessor is correct. (SuperC’s parser is less rigorously vali-
dated with hand-written regression tests.) (4) TypeChef needs to be
configured with over 300 additional macro definitions. It also treats
macros that are not explicitly marked as configuration variables,
i.e., have the CONFIG_ prefix, as undefined instead of free.

We refer to the experimental setup including only the first three
steps as the unconstrained kernel and the setup including all four
steps as the constrained kernel. As of 2/18/12, TypeChef runs only
on the constrained kernel, and only on version 2.6.33.3. To ensure
that results are comparable, the examples and experiments in this
paper also draw on version 2.6.33.3 of Linux. At the same time,
SuperC runs on both constrained and unconstrained kernels. In
fact, the data presented in Table 3 for preprocessor usage and in
Figure 8 for subparser counts was collected by running SuperC on
the unconstrained kernel. By comparison, the constrained kernel
has less variability: its 99th and 100th percentile subparser counts
are 12 and 32, as opposed to 21 and 39 for the unconstrained kernel.
SuperC also runs on other versions of Linux; we validated our tool
on the latest stable version, 3.2.9.

Figure 9 shows the cumulative latency distribution across com-
pilation units of the constrained kernel when running SuperC or
TypeChef on an off-the-shelf PC. For each tool, it also identifies
the maximum latency for a compilation unit and the total latency
for the kernel. The latter number should be treated as a conve-
nient summary, but no more: workload and tools easily parallelize
across cores and machines. When considering the 50th and 80th
percentiles, both tools perform reasonably well. While SuperC is
between 3.4 to 3.8 times faster than TypeChef, both curves show a
mostly linear increase, which is consistent with a normal distribu-
tion. However, the “knee” in TypeChef’s curve at about 25 seconds
and the subsequent long tail, reaching over 15 minutes, indicates
a serious scalability bottleneck. The likely cause is the conversion
of complex presence conditions into conjunctive normal form [25];
this representation is required by TypeChef’s SAT solver, which
TypeChef uses instead of BDDs.

Figure 10 plots a breakdown of SuperC latency. It demonstrates
that SuperC’s performance scales roughly linearly with compi-
lation unit size. Lexing, preprocessing, and parsing each scale

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45

La
te

nc
y

in
 S

ec
on

ds

Size in Millions of Bytes

Parse, Preprocess, and Lex
Preprocess and Lex
Lex

Figure 10. SuperC latency by compilation unit size.

roughly linearly as well, with most of the total latency split be-
tween preprocessing and parsing. The spike at about 25 MB is due
to fs/xfs/ containing code with a high density of macro invocations.
To provide a performance baseline, we measured the cumulative
latency distribution for gcc lexing, preprocessing, and parsing the
7,665 compilation units under allyesconfig. We rely on gcc’s
-ftime-report command line option for the timing data. The
50th, 90th, and 100th percentiles are 0.18, 0.24, and 0.87 seconds,
i.e., a factor of 12 to 32 speedup compared to SuperC. It reflects
that gcc does not have to preserve static conditionals and that gcc’s
C implementation has been carefully tuned for many years.

7. Related Work
Our work joins a good many attempts at solving the problem of
parsing C with arbitrary preprocessor usage [1, 3–5, 15, 19, 25,
26, 29, 31, 33, 36, 41]. Out of these efforts, only MAPR [33] and
TypeChef [25, 26] come close to solving the problem. Since we
already provided a detailed comparison to MAPR and TypeChef in
Sections 1, 2 and 6, we only discuss the other efforts here.

Previous, and incomplete, work on recognizing all of C can
be classified into three categories. First are tools, such as Xrefac-
tory [41], that process source code one configuration at a time, after
full preprocessing. This approach is also taken by Apple’s Xcode
IDE [10]. However, due to the exponential explosion of the config-
uration space, this is only practical for small source files with little
variability. Second are tools, such as CRefactory [19], that employ
a fixed but incomplete algorithm. This approach is also taken by
the Eclipse CDT IDE [21]. It is good enough—as long as source
code does not contain idioms that break the algorithm, which is a
big if for complex programs such as Linux. Third are tools, such
as Yacfe [31], that provide a plug-in architecture for heuristically
recognizing additional idioms. However, this approach creates an
arms race between tool builders and program developers, who need
to push both preprocessor and C itself to wring the last bit of flex-
ibility and performance out of their code—as amply demonstrated
by Ernst et al. [14], Tartler et al. [38], and this paper’s Section 6.

Considering parsing more generally, our work is comparable to
efforts that build on the basic parsing formalisms, i.e., LR [28],
LL [34], and PEG [7, 16], and seek to improve expressiveness
and/or performance. Notably, Elkhound [30] explores how to im-
prove the performance of generalized LR (GLR) parsers by falling
back on LALR for unambiguous productions. Both SDF2 [11, 40]
and Rats! [22] explore how to make grammars modular by build-
ing on formalisms that are closed under composition, GLR and
PEG, respectively. Rats! also explores how to speed up PEG im-
plementations, which, by default, memoize intermediate results to
support arbitrary back-tracking with linear performance. Finally,

11

ANTLR [32] explores how to provide most of the expressivity of
GLR and PEG, but with better performance by supporting variable
look-ahead for LL parsing.

At a finer level of detail, Fork-Merge LR parsing relies on a
DAG of parser stacks, just like Elkhound, but for a substantially
different reason. Elkhound forks its internal state to accept ambigu-
ous grammars, while SuperC forks its internal state to accept am-
biguous inputs. Next, like several other parser generators, SuperC
relies on annotations in the grammar to control AST building. For
instance, ANTLR, JavaCC/JJTree [23], Rats!, SableCC [18], and
SDF2 provide comparable facilities. Finally, many parsers for C
employ an ad-hoc technique for disambiguating typedef names
from other names, termed the “lexer hack” by Roskind [35]. In-
stead, SuperC relies on a more general plug-in facility for context
management. Rats! has a comparable facility, though details differ
significantly due to the underlying parsing formalisms, i.e., LR for
SuperC and PEG for Rats!.

8. Conclusion
This paper explores how to perform syntactic analysis of C code
while preserving its variability, i.e., static conditionals. First, we
identify all challenges posed by interactions between C prepro-
cessor and language proper. Our anecdotal and empirical evidence
from the x86 Linux kernel demonstrates that meeting these chal-
lenges is critical for processing real-world C programs. Second, we
present novel algorithms for configuration-preserving preprocess-
ing and parsing. Hoisting makes it possible to preprocess source
code while preserving static conditionals. The token follow-set as
well as early reduces, lazy shifts, and shared reduces make it pos-
sible to parse the result with very few LR subparsers and to gener-
ate a well-formed AST. Third, we discuss the pragmatics of build-
ing a real-world tool, SuperC, and demonstrate its effectiveness on
Linux. For future work, we will extend SuperC with support for au-
tomated refactorings and explore configuration-preserving seman-
tic analysis. We expect that the latter, much like our configuration-
preserving syntactic analysis, will require incorporating presence
conditions into all functionality, including by maintaining multiply-
defined symbols. In summary, forty years after C’s invention, we
finally lay the foundation for efficiently processing all of C.

Acknowledgements
We thank Martin Hirzel, Christian Kästner, Julian Rosse, and the
anonymous reviewers for their helpful feedback on earlier versions
of this paper. We also thank Jinyang Li and Russell Power for let-
ting us use their cluster for data collection. This work is supported
by NSF CNS-0448349, CNS-0615129, and CCF-1017849.

References
[1] B. Adams et al. Can we refactor conditional compilation into aspects?

In Proc. 8th AOSD, pp. 243–254, Mar. 2009.
[2] A. V. Aho et al. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, 2nd edition, Aug. 2006.
[3] R. L. Akers et al. Re-engineering C++ component models via auto-

matic program transformation. In Proc. 12th WCRE, pp. 13–22, Nov.
2005.

[4] G. J. Badros and D. Notkin. A framework for preprocessor-aware C
source code analyses. SPE, 30(8):907–924, July 2000.

[5] I. D. Baxter and M. Mehlich. Preprocessor conditional removal by
simple partial evaluation. In Proc. 8th WCRE, pp. 281–290, Oct. 2001.

[6] A. Bessey et al. A few billion lines of code later: Using static analysis
to find bugs in the real world. CACM, 53(2):66–75, Feb. 2010.

[7] A. Birman and J. D. Ullman. Parsing algorithms with backtrack.
Information and Control, 23(1):1–34, Aug. 1973.

[8] A. M. Bishop. C cross referencing and documenting tool. http:
//www.gedanken.demon.co.uk/cxref/.

[9] B. Blanchet et al. A static analyzer for large safety-critical software.
In Proc. PLDI, pp. 196–207, June 2003.

[10] R. Bowdidge. Performance trade-offs implementing refactoring sup-
port for Objective-C. In Proc. 3rd WRT, Oct. 2009.

[11] M. Bravenboer and E. Visser. Concrete syntax for objects. In Proc.
19th OOPSLA, pp. 365–383, Oct. 2004.

[12] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. TOC, C-35(8):677–691, Aug. 1986.

[13] F. DeRemer and T. Pennello. Efficient computation of LALR(1) look-
ahead sets. TOPLAS, 4(4):615–649, Oct. 1982.

[14] M. D. Ernst et al. An empirical analysis of C preprocessor use. TSE,
28(12):1146–1170, Dec. 2002.

[15] J.-M. Favre. Understanding-in-the-large. In Proc. 5th IWPC, pp. 29–
38, Mar. 1997.

[16] B. Ford. Parsing expression grammars: A recognition-based syntactic
foundation. In Proc. 31st POPL, pp. 111–122, Jan. 2004.

[17] Free Software Foundation. Bison. http://www.gnu.org/
software/bison/.

[18] É. Gagnon. SableCC, an object-oriented compiler framework. Mas-
ter’s thesis, McGill University, Mar. 1998.

[19] A. Garrido and R. Johnson. Analyzing multiple configurations of a C
program. In Proc. 21st ICSM, pp. 379–388, Sept. 2005.

[20] A. G. Gleditsch and P. K. Gjermshus. The LXR project. http:
//lxr.sourceforge.net/.

[21] E. Graf et al. Refactoring support for the C++ development tooling.
In Companion 22nd OOPSLA, pp. 781–782, Oct. 2007.

[22] R. Grimm. Better extensibility through modular syntax. In Proc.
PLDI, pp. 38–51, June 2006.

[23] java.net. JJTree reference documentation. http://javacc.java.
net/doc/JJTree.html.

[24] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity
tests means proving circuit lower bounds. In Proc. 35th STOC, pp.
355–364, June 2003.

[25] C. Kästner et al. Partial preprocessing C code for variability analysis.
In Proc. 5th VaMoS, pp. 127–136, Jan. 2011.

[26] C. Kästner et al. Variability-aware parsing in the presence of lexical
macros and conditional compilation. In Proc. 26th OOPSLA, pp. 805–
824, Oct. 2011.

[27] G. Klein et al. JFlex: The fast scanner generator for Java. http:
//jflex.de/.

[28] D. E. Knuth. On the translation of languages from left to right.
Information and Control, 8(6):607–639, Dec. 1965.

[29] B. McCloskey and E. Brewer. ASTEC: A new approach to refactoring
C. In Proc. 10th ESEC, pp. 21–30, Sept. 2005.

[30] S. McPeak and G. C. Necula. Elkhound: A fast, practical GLR parser
generator. In Proc. 13th CC, vol. 2985 of LNCS, pp. 73–88, Mar. 2004.

[31] Y. Padioleau. Parsing C/C++ code without pre-processing. In Proc.
18th CC, vol. 5501 of LNCS, pp. 109–125, Mar. 2009.

[32] T. Parr and K. Fisher. LL(*): The foundation of the ANTLR parser
generator. In Proc. PLDI, pp. 425–436, June 2011.

[33] M. Platoff et al. An integrated program representation and toolkit for
the maintenance of C programs. In Proc. ICSM, pp. 129–137, Oct.
1991.

[34] D. J. Rosenkrantz and R. E. Stearns. Properties of deterministic top
down grammars. In Proc. 1st STOC, pp. 165–180, May 1969.

[35] J. Roskind. Parsing C, the last word. The comp.compilers new-
group, Jan. 1992. http://groups.google.com/group/comp.
compilers/msg/c0797b5b668605b4.

[36] D. Spinellis. Global analysis and transformations in preprocessed
languages. TSE, 29(11):1019–1030, Nov. 2003.

[37] R. Tartler et al. Configuration coverage in the analysis of large-scale
system software. OSR, 45(3):10–14, Dec. 2011.

[38] R. Tartler et al. Feature consistency in compile-time-configurable
system software: Facing the Linux 10,000 feature problem. In Proc.
6th EuroSys, pp. 47–60, Apr. 2011.

[39] M. Tomita, ed. Generalized LR Parsing. Kluwer, 1991.
[40] E. Visser. Syntax Definition for Language Prototyping. PhD thesis,

University of Amsterdam, Sept. 1997.
[41] M. Vittek. Refactoring browser with preprocessor. In Proc. 7th CSMR,

pp. 101–110, Mar. 2003.
[42] J. Whaley. JavaBDD. http://javabdd.sourceforge.net/.

12

http://dx.doi.org/10.1145/1509239.1509274
http://dx.doi.org/10.1109/WCRE.2005.25
http://dx.doi.org/10.1109/WCRE.2005.25
http://dx.doi.org/10.1002/(SICI)1097-024X(20000710)30:8%3C907::AID-SPE324%3E3.3.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-024X(20000710)30:8%3C907::AID-SPE324%3E3.3.CO;2-9
http://dx.doi.org/10.1109/WCRE.2001.957833
http://dx.doi.org/10.1109/WCRE.2001.957833
http://dx.doi.org/10.1145/1646353.1646374
http://dx.doi.org/10.1145/1646353.1646374
http://dx.doi.org/10.1016/S0019-9958(73)90851-6
http://www.gedanken.demon.co.uk/cxref/
http://www.gedanken.demon.co.uk/cxref/
http://dx.doi.org/10.1145/781131.781153
http://homepage.mac.com/rbowdidge/research_assets/bowdidgeTradeoffs.pdf
http://homepage.mac.com/rbowdidge/research_assets/bowdidgeTradeoffs.pdf
http://dx.doi.org/10.1145/1028976.1029007
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1145/69622.357187
http://dx.doi.org/10.1145/69622.357187
http://dx.doi.org/10.1109/TSE.2002.1158288
http://dx.doi.org/10.1109/WPC.1997.601260
http://dx.doi.org/10.1145/964001.964011
http://dx.doi.org/10.1145/964001.964011
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
http://sablecc.sourceforge.net/downloads/thesis.pdf
http://dx.doi.org/10.1109/ICSM.2005.23
http://dx.doi.org/10.1109/ICSM.2005.23
http://lxr.sourceforge.net/
http://lxr.sourceforge.net/
http://dx.doi.org/10.1145/1297846.1297885
http://dx.doi.org/10.1145/1133981.1133987
http://javacc.java.net/doc/JJTree.html
http://javacc.java.net/doc/JJTree.html
http://dx.doi.org/10.1145/780542.780595
http://dx.doi.org/10.1145/780542.780595
http://dx.doi.org/10.1145/1944892.1944908
http://dx.doi.org/10.1145/2048066.2048128
http://dx.doi.org/10.1145/2048066.2048128
http://jflex.de/
http://jflex.de/
http://dx.doi.org/10.1016/S0019-9958(65)90426-2
http://dx.doi.org/10.1145/1081706.1081712
http://dx.doi.org/10.1145/1081706.1081712
http://dx.doi.org/10.1007/978-3-540-24723-4_6
http://dx.doi.org/10.1007/978-3-540-24723-4_6
http://dx.doi.org/10.1007/978-3-642-00722-4_9
http://dx.doi.org/10.1145/1993498.1993548
http://dx.doi.org/10.1145/1993498.1993548
http://dx.doi.org/10.1109/ICSM.1991.160319
http://dx.doi.org/10.1109/ICSM.1991.160319
http://dx.doi.org/10.1145/800169.805431
http://dx.doi.org/10.1145/800169.805431
http://groups.google.com/group/comp.compilers/msg/c0797b5b668605b4
http://groups.google.com/group/comp.compilers/msg/c0797b5b668605b4
http://dx.doi.org/10.1109/TSE.2003.1245303
http://dx.doi.org/10.1109/TSE.2003.1245303
http://dx.doi.org/10.1145/2094091.2094095
http://dx.doi.org/10.1145/2094091.2094095
http://dx.doi.org/10.1145/1966445.1966451
http://dx.doi.org/10.1145/1966445.1966451
http://dx.doi.org/10.1109/CSMR.2003.1192417
http://javabdd.sourceforge.net/

	Introduction
	The Problem and Solution Approach
	Interactions Between C and the Preprocessor

	The Configuration-Preserving Preprocessor
	Hoisting Static Conditionals
	Converting Conditional Expressions

	The Configuration-Preserving Parser
	Fork-Merge LR Parsing
	The Token Follow-Set
	Forking and Merging
	Optimizations
	Putting It All Together

	Pragmatics
	Building Abstract Syntax Trees
	Managing Parser Context

	Evaluation
	Preprocessor Usage and Interactions
	Subparser Counts
	Performance

	Related Work
	Conclusion

