April 15th, 2021

April 13-15, 2021

D RIS - S S . VA S W S D R WS S, VD —"

Helping Linux Maintainers
Localize Configurations

Progress Towards a Comprehensive Solution

Paul Gazzillo
University of Central Florida

UCF

https://paulgazzillo.com e RSITE ST @paul_gazzillo

https://paulgazzillo.com

the linux kernel has tons of configuration options

Linux/x86 5.4.0 Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus
----). Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for
Search. Legend: [*] built-in [] excluded <M> module < > module capable

'l *** Compiler: Ubuntu 9.2.1-9ubuntu2) 9.2.1 20191008 ***
General setup --->
64-bit kernel
Processor type and features --->
Power management and ACPI options --->
Bus options (PCI etc.) --->
Binary Emulations --->
Firmware Drivers --->
[*] virtualization --->
General architecture-dependent options --->
Enable loadable module support --->
Enable the block layer --->
I0 Schedulers --->
Executable file formats --->
Memory Management options --->
[*] Networking support --->

v(+)

[*]
[*]

< Exit > < Help > < Save > < Load >

this configurability brings maintenance challenges

over 15,000 configuration options
about 20 million source lines of code
over 20,000 C files

and growing!

maintainers need a configuration file to test a patch

can we automatically figure out the

right .config files to use given a patch?

Julia Lawall
Inria/LIP6

given a patch, what configurations does it affect? (jmake, lawall et al)
given a bug, what configurations does it appear in? (config-bisect)

what’s a minimal configuration that includes specific source? (config-bisect)

what code is no longer configurable in the kernel? (undertaker, tarler et al)

a common problem: mapping code back to the
configuration specifications that control that code

configuration localization:

given some program behavior, what are all the
configurations which include that behavior?

If we can automate configuration localization, then
we can enable automated tools for many problems

Localizing Configurations in Highly-Configurable Systems

Paul Gazzillo
University of Central Florida

paul@pgazz.com
ThanhVu Nguyen

University of Nebraska-Lincoln
tnguyen@cse.unl.edu

ABSTRACT

The complexity of configurable systems has grown immensely, and
it is only getting more complex. Such systems are a challenge for
software testing and maintenance, because bugs and other defects
can and do appear in any configuration. One common requirement
for many development tasks is to identify the configurations that
lead to a given defect or some other program behavior. We distill
this requirement down to a challenge question: given a program
location in a source file, what are valid configurations that include
the location? The key obstacle is scalability. When there are thou-
sands of configuration options, enumerating all combinations is
exponential and infeasible. We provide a set of target programs of
increasing difficulty and variations on the challenge question so
that submitters of all experience levels can try out solutions. Our
hope is to engage the community and stimulate new and interesting
approaches to the problem of analyzing configurations.

Ugur Koc
University of Maryland, College Park
ukoc@cs.umd.edu

Shiyi Wei
University of Texas at Dallas

swei@utdallas.edu

software, such as Linux, BusyBox, Firefox, and Apache, have mil-
lions or billions of configurations. While bugs can and do appear in
any configuration [1], there are simply too many configurations to
test them all separately. With the proliferation of Internet-of-things
devices, maintenance and testing highly-configurable systems are
even more essential, given the variety of devices using different
configurations of the same software.

Many aspects of software maintenance are impeded by config-
urability, including testing, localizing and repairing bugs, security
auditing, and finding code smells and dead code. All must apply
to every configuration of the system. One simple distillation of
these tasks is to identify interesting configurations: Given some
point of interest in a program, what are the configurations that reach
that point of interest? A point of interest can be a particular line,
file, program slice, bug, security violation, or some other subset of
program behavior. Ideally, we would like to discover the complete
space of configurations that reach the given point.

SPLC 2018 challenge case

PCLocator: A Tool Suite to Automatically Identify
Configurations for Code Locations

Elias Kuiter Sebastian Krieter Jacob Kriiger
Otto-von-Guericke-University Harz University of Applied Sciences Otto-von-Guericke-University
kuiter@ovgu.de Otto-von-Guericke-University jkrueger@ovgu.de
skrieter@hs-harz.de
Kai Ludwig Thomas Leich Gunter Saake
Harz University of Applied Sciences = Harz University of Applied Sciences Otto-von-Guericke-University
kludwig@hs-harz.de METOP GmbH saake@ovgu.de

tleich@hs-harz.de

ABSTRACT

The source code of highly-configurable software is challenging to
comprehend, analyze, and test. In particular, it is hard to identify all
configurations that comprise a certain code location. We contribute
PCLocator, a tool suite that solves this problem by utilizing static
analysis tools for compile-time variability. Using BusyBox and the
Variability Bugs Database (VBDDb), we evaluate the correctness and
performance of PCLocator. The results show that we are able to
analyze files in a matter of seconds and derive correct configurations
in 95% of all cases.

that specifies options for the presence or abserce of each feature.
If a configuration satisfies all feature dependencies (e.g., requires,
alternatives), it is valid and a product can be derived.

A high number of configuration options, which may be scattered
across different variability mechanisms, hampers the comprehen-
sion of source code, its analysis, and especially testing it. For exam-
ple, Linux comprises over 10,000 configuration options that allow
for millions of products [17]. Also, Linux’ configuration options
and their dependencies are implemented in a combination of the C
preprocessor and Kconfig files, which alone comprise more than
110,000 lines of code. In particular, it is important in such a context

how does Kbuild work and how can
we do configuration localization?

what does linux’s build system do?

build system

configuration option)

) kernel binary
settings (.config)

(vmlinuz)

let’s look at the phases of build process

build system

configuration option)

) kernel binary
settings (.config)

(vmlinuz)

10

let’s look at the phases of build process

build system

configuration option)

) kernel binary
settings (.config)

(vmlinuz)

10

let’s look at the phases of build process

build system

configuration option) Kbuild) kernel binary
settings (.config) Makefiles (vmlinuz)

10

let’s look at the phases of build process

build system

configuration option) Kbuild C) kernel binary
settings (.config) Makefiles preprocessor (vmlinuz)

10

let’s look at the phases of build process

build system

configuration option) Kbuild C C compiler,

) kernel binary
settings (.config) Makefiles preprocessor linker

(vmlinuz)

10

the build system as code generation using
metaprogramming

. : . . configured and
configuration option) : Kbuild C)
settings (.config) Kcontig WELGCHIER preprocessor p:ss:c?:iiileed

11

configuration localization is finding the inverse of
the build process

configured and
preprocessed
source code

configuration option
settings (.config)

source code
locations

all possible
.config files

12

each phase of the build encodes rules to control
the Inclusion and exclusion of source code

C

preprocessor

fs/ufs/super.c:

#ifdef CONFIG_UFS_DEBUG
/ %k
* Print contents of ufs_super_block, useful for debugging
*/
static void ufs_print_super_stuff(struct super_block xsb,
struct ufs_super_block first xusbl,
struct ufs_super_block second xusb?2,
struct ufs _super_block third *usb3)

{

[/ .
#endif

u32 magic = fs32_to_cpu(sb, usb3->fs_magic);

13

each phase of the build encodes rules to control
the Inclusion and exclusion of source code

Kbuild
VY EVLCHIES

fs/ufs/Makefile:

obj-$(CONFIG_UFS_FS) += ufs.o
ufs—objs := balloc.o cylinder.o dir.o file.o 1alloc.o 1node.o \
namei.o super.o util.o

14

each phase of the build encodes rules to control
the Inclusion and exclusion of source code

fs/ufs/Kconfig:

config UFS_DEBUG
bool "UFS debugging"
depends on UFS_FS

config UFS_FS
tristate "UFS file system support (read only)"
depends on BLOCK

15

we can use boolean logic to represent the
“buildability” of code at each step

10

we can use boolean logic to represent the
“buildability” of code at each step

N N N4

A(opti, opt2, ...) and B(opt1l, opt2,...) and C(opti, opt2, ...)

10

configuration localization then becomes the
boolean satisfiability problem

step 1: generate constraints for
given source code

N

build_constraints(opt1, opt2, ...)

N

step 2: find solutions with a SAT/SMT
solver to get .config files

17

lvat
kconfigreader
dumpconf
kclause
kbuildminer
kmax
typechef

superc

(many more)

18

there are many tools that extract linux feature models

1. lago Abal, Claus Brabrand, and Andrzej Wasowski. 2014. 42 Variability Bugs in the Linux Kernel: A Qualitative Analysis. In
Proceedings ofthe 29th ACM/IEEE International Conference on Automated Software Engineering (ASE '14). ACM, New York, NY, USA,

421--432. By @

2. Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter. 2007. Design recovery and maintenance of
build systems. In 23rd IEEE International Conference on Software Maintenance (ICSM 2007), October 2-5, 2007, Paris, France. 114~

-123. 84 =

3. Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Kastner, and Brady Garvin. 2013. Exploring Feature
Interactions in the Wild: The New Feature-interaction Challenge. In Proceedings of the s5th International Workshop on Feature-
Oriented Software Development (FOSD '13). ACM, New York, NY, USA, 1--8. 4 @

4. Thorsten Berger, Steven She, Rafael Lotufo, Krzysztof Czarnecki, and Andrzej Wasowski. 2010. Feature-to-code Mapping
in Two Large Product Lines. In Proceedings of the 14th International Conference on Software Product Lines: Going Beyond (SPLC'10).
Springer-Verlag, Berlin, Heidelberg, 498--499. http://dl.acm.org/citation.cfm?id=1885639.1885698 4 @

5. Renée C. Bryce and Charles J. Colbourn. 2006. Prioritized interaction testing for pair-wise coverage with seeding and
constraints. Information and Software Technology 48, 10 (Oct. 2006), 960--970. B %=

6.D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. 1996. The combinatorial design approach to automatic test
generation. IEEE Software 13, 5 (Sept. 1996), 83--88. k4 @

7. M.B. Cohen, Amanda Swearngin, Brady Garvin, Jacob Swanson, Justyna Petke, Kaylei Burke, Katie Macias, Ronald Decker,
Wayne Motycka, and Zhen and Wang. {n. d.}. Combinatorial Interaction Testing Portal. ({n. d.}). http://cse.unl.edu/cit-
portal, Accessed on 2018-01-16. 2§

8. M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn. 2003. Constructing test suites for interaction testing. In
25th International Conference on Software Engineering, 2003. Proceedings. 38--48. 54 @

9. Krzysztof Czarnecki and Krzysztof Pietroszek. 2006. Verifying Feature-based Model Templates Against Well-formedness
OCL Constraints. In Proceedings of the 5th International Conference on Generative Programming and Component Engineering (GPCE
'06). ACM, New York, NY, USA, 211--220. B B

10. Gulsen Demiroz and Cemal Yilmaz. 2012. Cost-aware combinatorial interaction testing. In Proceedings of the Internatinoal
Conference on Advances in System Testing and Validation Lifecycles. 9--16. g4

11. Christian Dietrich, Reinhard Tartler, Wolfgang Schroder-Preikschat, and Daniel Lohmann. 2012. A Robust Approach for
Variability Extraction from the Linux Build System. In Proceedings of the 16th International Software Product Line Conference -
Volume 1 (SPLC '12). ACM, New York, NY, USA, 21--30. B @&

12. Christian Dietrich, Reinhard Tartler, Wolfgang Schroder-Preikshat, and Daniel Lohmann. 2012. A robust approach for
variability extraction from the Linux build system. 21--30. 4 @

13. Emine Dumlu, Cemal Yilmaz, Myra B. Cohen, and Adam Porter. 2011. Feedback Driven Adaptive Combinatorial Testing.
In Proceedings of the 2011 International Symposium on Software Testing and Analysis (ISSTA '11). ACM, New York, NY, USA, 243~

-253. B

14. Alejandra Garrido and Ralph Johnson. 2005. Analyzing Multiple Configurations of a C Program. In Proceedings of the 21st
IEEE International Conference on Software Maintenance (ICSM 'os). IEEE Computer Society, Washington, DC, USA, 379--388.

but extracting models is not the whole story

unifying output
scaling to linux
high compatibility with linux configuration languages
high fidelity to build system behavior
producing drop-in .config files

quality-of-life features for users

19

plocalizer: creates .conf files for patches

currently localizes entire .c files (kconfig and kbuild)
currently integrating preprocessor conditions
still investigating runtime conditions, e.g., IS_ENABLED
evaluating efficacy on real-world patches

upcoming challenge: patches involving configuration specifications themselves

graduate students currently working on this

Necip Yildiran Julian Braha

20

tool demo video today at 18:30 CEST

conclusion

the kernel’s extreme configurability brings maintenace challenges
automatic configuration localization can help automate several maintenance tasks
build system analysis configuration constraints
the plocalizer tool will localize configurations for given patches

prototype is working for a subset of the problem

https://github.com/paulgazz/kmax

22

https://github.com/paulgazz/kmax

