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1 Introduction

Persistent memory, also known as non-volatile main memory (NVMM), is a recent develop-
ment in memory technology that provides the byte-addressability of RAM and the durability
of of disk drives. This technology is a promising solution for workloads that would bene-
fit from high-performance recoverable memory, such as databases, long-running scientific
computations, or cloud hosting services. Intel, for example, lists Cisco, Huawei Cloud, and
Oracle (among others) as customers for their Optane NVDIMMs. [8]

Current research on NVMM spans several areas. Much of the research involves methods
to improve the performance of the memory while still maintaining guaranteed recoverability.
[7, 11, 4] However, there are also several papers that address security risks associated with
NVMM. Given that NVMM is an attractive solution for workloads that may handle sensitive
data (such as customer data in a cloud application), it is important to fully address and
investigate the security vulnerabilities that NVMM is susceptible to. While there have been
several papers addressing the security of NVMM, there has only been one survey paper that
has outlined the state of research in the area. [19] This paper was published in early 2020,
so it has missed some new impactful developments in the area, necessitating a new survey
to accurately portray the area.

This paper addresses and outlines the current research regarding non-volatile memory
security and its themes, providing critique and making connections to other work where
appropriate. The paper will begin with a background section that explains all necessary
information to place the research into context, followed by sections defined by the vulnera-
bilities that the given research addresses. The vulnerabilities are as follows:

1. Passive vulnerabilities, or vulnerabilities that don’t require any extra tampering on
the part of the attacker to carry out. This category primarily includes data remanence
attacks.

2. Active vulnerabilities, or vulnerabilities that generally involve an attacker snooping on
a running program or machine to manipulate or obtain data.

Each of these sections will discuss the papers that address these security concerns in
depth. The paper concludes with a summary of open problems in secure persistent memory.
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2 Background

2.1 Persistent Memory

Persistent memory, also known as non-volatile main memory, is an emerging memory tech-
nology that combines fast byte-addressable memory with persistence so that data is not lost
on a crash. NVMM is considered to be a contender for main memory due to its recoverability
and speed. [9, 17] The initial forms of this technology included storage-class memory such
as phase-change memory, STT-RAM, and memresistors. [13] However, the most modern
form of non-volatile memory is technologies similar to that of Intel’s Optane DC Persistent
Memory. The primary usage paradigms of persistent memory involve using it as storage for
a file system or wrapping data structures in an object so that it may be independently stored
in memory. [17]

The ability to recover upon a crash is reliant on strict write atomicity requirements. These
atomicity requirements keep data consistent, which prevents memory from being corrupted
due to partial writes before a crash. Memory persistency allows for reasoning about the write
order of data, which can be used to ensure data consistency. The methodologies to uphold
memory consistency generally involve ordering of writes and fencing so that data updates
atomically, and there are several models that present differing methodologies of doing so. [11,
13, 7] Persistent memory also requires that the NVMM’s data be mapped into the address
space of the program using it, especially in the case where it is being used independently
from a file system.

2.2 Memory Vulnerabilities

2.2.1 Passive Vulnerabilities

While memory vulnerabilities are among some of the oldest attack vectors, they still pose
an issue for persistent memory. The non-volatility of persistent memory means that the
NVDIMMs are vulnerable to cold boot attacks more than standard DIMMs. [12] Cold boot
attacks traditionally involve an attacker with physical access to the hardware cooling the
DRAM in the machine so that the data contained in it will remain for a few minutes after
shutdown. In those few minutes, attackers plug the DIMMS into their machine and stream
out any remaining data. In the case of NVDIMMs, cooling is no longer required to maintain
the persistence of the data contained. Adequate physical security is necessary to prevent
this scenario, but it cannot be the only line of defense. Encryption of the data in NVMM
is thus a popular consideration, especially given that encryption has been demonstrated as
effective and performant in secure processor systems. [15]

However, encryption is not totally invulnerable, much like any security measure. Encryp-
tion can be vulnerable to replay attacks, in which an attacker uses previously sent messages
during the execution of a program to break encryption. [1] Solutions to this issue has in-
volved tagging messages with types and implicit typing through functions in general cases,
[1] but persistent solutions tend to involve verifying the integrity of data before it arrives
on-chip. [6]
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2.2.2 Active Vulnerabilities

Persistent memory is not only vulnerable to data remanence attacks, however. Persistent
memory is also vulnerable to unauthorized memory disclosure and corruption. While it is
vulnerable to these issues in the way any program is if it is not properly protected by the
operating system’s access control, it is also uniquely vulnerable due to its constant address in
physical memory. The standard solutions to ensure authorized access and anonymity involve
operating system level access control and intra process isolation. [18]

3 Passive Vulnerability Mitigation

The papers addressing data remanence attacks include encryption at the architecture or
hardware level [3, 5], with the exception of the paper written by Pan et al. [12]

3.1 Architecture-Level Encryption

The solutions involving architecture-level encryption, i-NVMM [5] and SuperMem [21] have a
few approaches to encrypting the data in NVMM. i-NVMM utilizes incremental encryption,
meaning that pages are encrypted and decrypted as a program is executing. A program’s
resident set is encrypted by a memory-side encryption engine, while the working set is left
decrypted. [5] SuperMem, in contrast, utilizes counter mode encryption embedded in each
write to memory. The encryption, done in the memory controller, utilizes an AES algorithm
that takes a memory line number and a per-line counter in order to produce a unique one-
time pad (OTP) for each line written to memory. [21]

Due to their very different natures, both approaches have unique cruxes to their approach.
The primary determination of performance in i-NVMM relies on how often its built-in inert
page predictor mispredicts that a page is inert (and thus can be encrypted). Frequent
misprediction results in significant overheads, as the program must wait for the part of
the page it is requesting to be decrypted. While it takes less time for only part of the
page to be decrypted, several accesses to this page will cause the performance overheads
to accrue. [5] There is a method for mispredicted pages to be fully decrypted, but it can
take upwards of hundreds of thousands of accesses before a page is considered active and
deserving of decryption. How often misprediction occurs can be somewhat controlled through
the variables associated with the memory scan frequency and the inactivity threshold before
marking a page inert. However, too low of a value for either of these variables results in low
misprediction at the cost of a small percentage of the memory being encrypted. [5] When
set at the moderate levels suggested by the authors, however, the misprediction rate roughly
hovers around 21% with 81% memory coverage. [5] This generally results in acceptable
performance overheads, given that much of the data that a program is accessing is within
its working set and thus requires no additional instructions to read and utilize the data.

SuperMem, in contrast, finds most of its cruxes embedded within its usage of a counter
write-through cache. The main drawbacks include that each time a minor counter (which
encrypts one line in a page) overflows, the major counter (which encrypts the entire page)
must be incremented by one and the entire page must be re-encrypted with these new
counters. [21] This can introduce latency in rare workloads that may be writing to one
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area of memory frequently. However, SuperMem counteracts these possible latencies by
reducing the amount of writes to NVM by counter write coalescing and speeding up writes
with parallelizing cross-bank storage. [21] Counter write coalescing holds writes to the same
memory line in NVMM to take place at once, reducing the amount of writes that need
to take place. Using cross-bank storage removes the bottleneck of all the counters being
written to the same bank or counters and their data being written to the same bank. [21]
With these two methods, the overall latency is reduced and any subsequent rare case where
re-encryption of pages is frequent will see some performance benefit over other encrypted
NVMM approaches.

i-NVMM and SuperMem represent a legacy and recent entry into hardware-level encryp-
tion, respectively. i-NVMM reduces overall latency by leaving actively used pages decrypted,
but these pages are left vulnerable upon shutdown, making it not as secure as SuperMem.
SuperMem also results in a better shutdown for systems equipped with NVMM, as i-NVMM
requires some time to encrypt the pages that were within the working set of the running
programs before shutdown. Both approaches are transparent to the developer, making them
easy to adopt on systems desiring the extra protection, but SuperMem makes a better case
with its ability to more completely protect the NVMM.

3.2 Software-Level Mitigation

The other approach to making NVMM resistent to cold boot attacks comes in the paper
written by Pan et al. [12] The authors propose a software-based solution that involves a patch
to the linux kernel. This patch allows for memory blocks to be marked as sensitive, forcing
them to reside in encrypted main memory. This prevents the data from residing in insecure
NVM caches. It is important to note that this solution focuses on protecting the caches of
NVMM rather than its main memory, as the authors acknowledge encryption as a satisfactory
approach for main memory. [12] Securing caches pose a significant technical challenge, as
encrypting them can incur significant overhead and is thus difficult to implement.

This solution is primarily implemented with a software API that will declare blocks in
memory as secret and thus forbidden to be stored in NVM caches. The example usage given
by the paper involves storing secret keys for disk encryption, but the same concepts apply
to any secret data. [12] The software solution proposed has up to a 45% overhead without
any cryptographic hardware acceleration on the ARM processors tested, but only 2% when
there is hardware support. [12] The overhead is almost directly correlated with the amount
of accesses to the uncacheable secret data (in the case of this paper, encryption keys). The
authors propose that a performance optimization can be implemented by allowing secret
data to be cached when an authenticated user is logged in, as cold boot attacks are unlikely
to be staged while a user is utilizing the system.

This solution is geared towards protecting encryption keys, so it is uncertain how effective
this solution would be for other use-cases. It may pose severe overheads for computations
that rely on quick cache access to some subset of secret data, as the program would have
to load this data from slower encrypted main memory each time the data is needed. This
may also compromise some data upon system failure, as these secrets may be necessary to
resume the last executed program upon restart.
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3.3 Performance Improvements

Many of the papers that make improvements in passive vulnerability mitigation often con-
tribute a significant amount of material and more completely solve the issue of data re-
manence attacks, making the contribution a new solution rather than an improvement on
existing solutions. The paper written by Awad et al. [2] is one of the few that seems best
classified as an improvement rather than a standalone solution to data remanence attacks.
The paper introduces a secure NVMM controller, Silent Shredder, reduces the amount of
writes that occurs in counter mode encryption by completely eliminating the writes that
”zero” out a page before it is reallocated to another process. Instead of physically zeroing
the page, Silent Shredder modifies the encryption key used for the particular page in encryp-
tion in order to make the data enclosed completely unintelligible to a new process utilizing
it. [2] It mostly accomplishes this with initialization vectors, which handles both making
the page unintelligible and providing the cache with a zero-filled block so that it properly
recognizes its zeroed state. This solution not only reduces the amount of writes to NVMM,
but also improves initialization read speed due to the minor counter making shredded blocks
easy to identify. A zero filled block is returned to the cache, eliminating the need to actually
read the invalid data. [2]

4 Active Vulnerability Mitigation

The other common class of papers address traditional memory vulnerabilities, such as those
that arise from an attacker snooping on an executing program. These attacks often involve
unauthorized memory reads and writes, which can lead to unauthorized memory disclosure
or corruption. These threats are especially disastrous to NVMM due the longevity of data
within them. The proposed solutions include (but are not limited to) using Merkle Trees to
protect the integrity of the data being written [14], reducing the amount of time memory is
attached to a program’s address space [17], and providing intra-process isolation for persistent
memory objects. [18]

Merkle trees (MTs) have been used in the past to verify the integrity of secure processors
[10, 15], making it an attractive consideration for NVMM. MTs for integrity often involve
the usage of message authentication codes (MACs), where MACs are associated with nodes
of the MT. To verify integrity, the MACs are computed from the node written to the root
MAC. The root of the MT, and thus its associated MAC, are always kept on chip. [15, 16]
It is important to note that while MTs are effective at ensuring the integrity of data being
written into memory, they also require several extra reads and writes to maintain. This
places strain on the already reduced write capacity of NVMM. [14] The paper written by
Rakshit et al. attempts to address this with Authentication Scheme for SecURE energy
efficient NVMs (ASSURE). [14] This solution leverages multi-root MTs (MMTs) to reduce
the amount of hashes that have to be recomputed in a MT on write, which in turn reduces
writes to NVMM. To reduce the amount of memory needed to maintain the multiple roots
processor-side, only a few roots are dynamically predicted to be active. In conjunction with
the MMTs the authors also use smart MACs (SMACs), which leverage that DEUCE NVM
encryption only re-encrypts modified words when consecutive write-backs to the same area
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are made. [14] SMACs leverage that feature by only recomputing the parts of the MAC
corresponding to the word(s) of the cache line that are re-encrypted on write.

The next approach displayed in literature involves reducing the amount of time that
memory is exposed in a program’s address space. [17] This solution uses a combination of
address space layout randomization (ASLR) and page table entries (PTEs) embedded into
the persistent memory objects (PMOs). When memory is needed within a program, the
persistent memory object is attached to the program’s address space by pointing a page
table entry to the physical memory where the PMO is located. [17] A PTE tree is present in
the case where the PMO is larger than a word in order to avoid the prohibitively large cost
of initializing multiple PTEs. By creating several PTEs within the PMO, we avoid both the
cost of creation of these PTEs and the cost of a TLB shootdown that would occur each time
that a PMO is mapped to the memory of a program. [17] At each attach, the address of the
PMO is also randomized so that an attacker cannot simply observe memory being reattached
in the same location several times during execution. By changing where it is attached upon
each attach and completely detaching the memory when not needed, attackers are unable to
discern where the memory is located or stage attacks against it while unattached. [17]

The last approach is similar to Intel’s MPK. The solution, detailed in the paper written by
Xu et al., [18] involves the same process of splitting memory into several protection domains
where access in and out is controlled by protection keys. When this methodology is applied
to NVMM, a PMO is placed into one of several protection domains upon attach with an
associated protection key detailing its access control policy. Subsequent loads and stores are
checked against the domain’s access policy as well as the the page access policy in the TLB or
page table. [18] By protecting PMOs this way, badly behaving threads cannot compromise
a PMO being utilized in another program that it does not have access to. MPK is not well
suited to PMOs out of the box due to its limitation of 16 protection keys and domains, so
a couple solutions are proposed to counteract this limitation. The first approach is similar
to an existing solution, libmpk, which maps 16 protection keys to an unlimited amount of
domains. The proposed approach differs from libmpk with its extra architecture to reduce
overhead. This approach is called Hardware MPK Virtualization. [18] The second approach,
called Hardware Domain Virtualization, completely abandons the need for limited keys by
managing access control on the domain itself. This not only offers individual protection to
each PMO, but also completely removes the need for TLB shootdowns when an entry is
evicted or changed. [18]

Given how varied these approaches are, they are more difficult to compare directly. Many
of these solutions could be used in tandem, especially ASSURE [14] and Hardware Domain
Virtualization [18], as ASSURE’s integrity verification schemes could be used as a backup in
cases where data is wrongfully able to be modified in cases of human error in setting domain
permissions. This is also the case for the solution that involves attaching and detaching
PMOs[17], as it is primarily protecting the data from modification rather than assuring the
integrity of the data. Most of the weaknesses of these papers originate in the fact they still
incur worst-case overhead percentages roughly in the double digits [18, 17] or still have an
impact on the longevity of the NVMM. [14] However, overhead and shortened memory life
span penalties may be offset enough by the relative speed and recoverability of NVMM to
make these solutions worthwhile over volatile memory and disk.
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4.1 Performance Improvements

The papers that improve upon these solutions are mostly focused on providing better security
metadata recovery. Given that a major promise of NVMM is quick recovery upon failure,
assuring that the substantial amount of security metadata is also recovered without adding
significant overhead is essential. Anubis [20] and Triad-NVM [3] both attempt to solve this
issue. Anubis is a memory controller design that makes security metadata recovery faster
and more consistent by keeping track of which addresses are not up to date upon a crash
and restoring the parts of the tree that are affected. For SGX-style Merkle trees, Anubis
also keeps a shadow copy of the cache in persistent memory. [20] This shadow copy is stored
in a shadow table with a small Merkle tree to verify its integrity. Only the root of the tree
needs to be kept securely, as verification of the shadow copy is only done during recovery.
By only recomputing counter blocks and Merkle tree nodes that were marked as lost, Anubis
eliminates the need to completely reconstruct Merkle trees.

Triad-NVM, in contrast, introduces a new methodology for persisting and recovering
security metadata. In Triad-NVM, persistent and non-persistent regions are treated differ-
ently to speed up recovery. The primary mechanism for recovery of the persistent regions is
persisting a given number of levels of the Merkle Tree from the leaf up. Persisting only the
low levels of the tree can provide some assistance in isolating issues with corrupted coun-
ters. However, persisting more of the tree shortens recovery time, as there are less nodes
to compute when reconstructing the tree. [3] In the non-persistent region of memory, the
counters and Merkle tree are updated lazily by setting the intermediate parent nodes of the
counters to zero. When a leaf node’s counter is updated and a zero is found in it’s parent, the
architecture knows that this is the first write to the counter block and updates the counter
value and its parent accordingly. [3] This solution does provide some recovery speedup over
other solutions, but still results in multiple extra writes being made to NVMM, which is still
detrimental to the hardware’s longevity overall. [3]

5 Conclusion

Non-volatile main memory is still relatively new hardware, meaning that there are many
aspects that require further development and instrumentation. This is especially so given
that its primary users are cloud providers that require high reliability and strong security
guarantees for any hardware adopted into their ecosystem. Security is especially important
to these providers because their enterprise customers may be storing sensitive customer or
company data. To illuminate the current research regarding the security of NVMM, this
paper introduces and explains seven security papers and splits them into two categories
based upon what class of vulnerabilities they defend against.

The first of these categories is passive vulnerabilities, which are generally solved with
encryption. [17, 21, 12] The main areas for growth in these papers involve making the
encryption require less writes to NVMM, as the extra writes would put strain on the cells. [2]
A lot of improvements also center around reducing overheads and latency that the encryption
causes. The most promising pathway for solutions in this category seems to be architecture-
level encryption, as solutions can offer significant speed boosts through direct interaction
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with the memory bus.
The other class of vulnerabilities addressed are active vulnerabilities, which have a myr-

iad of solutions at the architecture level. [17, 18, 14] Architecture solutions provide some
performance benefit and more flexibility for custom solutions that interface directly with
memory. Few of these solutions cover all aspects of protecting memory; Some combination
of protecting the memory from unauthorized writes and assuring data integrity is necessary
to provide the most complete protection. Papers proposing improvements involve making
security metadata more quickly recoverable and alternate methodologies for recovering the
metadata. [20, 3] Merkle trees require many extra writes to fully persist, making them
detrimental to the longevity of the memory when persisted but easily recoverable. Merkle
trees also require a significant amount of extra computation to recompute upon recovery,
making them detrimental to the recovery time of a machine upon failure when persisted
minimally. Thus, much research has been devoted to striking the careful balance between
both approaches.

Solutions for NVMM security are diverse and have several avenues for improvement.
With time, NVMM is likely to become a significant candidate for main memory in machines
with several diverse, long-running workflows, making their security paramount to the overall
security of a significant subset of computing. By giving a general overview of the existing
papers addressing NVMM security, this paper will hopefully help direct others to general
research areas within NVMM security that require more attention and development.
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