Automating Safe and Secure
Software Development

Paul Gazzillo
Stevens Institute

pgazz.com

Ehe New Pork @imes nttps:/nyti.ms/2xsCMS

BUSINESS DAY

Equifax Says Cyberattack May
Have Affected 143 Million in the

U.S.

Equifax, one
Thursday th
compromise

S Ether Theft

Michael del Castillo & ¥ 3
® Jun 17, 2016 at 14:00 UTC

=

Issue Leads to $60 Million

Meltdown and Spectre

Vulnerabilities in modern computers leak passwords and sensitive data.

data which is currently processed on the computer. While programs are typically not permitted to read data from other program:
a malicious program can exploit Meltdown and Spectre to get hold of secrets stored in the memory of other running program:
This might include your passwords stored in a password manager or browser, your personal photos, emails, instant message
and even business-critical documents.

Meltdown and Spectre work on personal computers, mobile devices, and in the cloud. Depending on the cloud provider
infrastructure, it might be possible to steal data from other customers.

/22Ny

HACKERS REMOTELY KILL A JEEP ON
| THEMIGHWAY=—WITIMIEIN T

U S offlclals warn medical
devices are vulnerable to
: hacking

Emaill

HACKERS GAN DISABLE, A SNIPER RIFLE
_OR CHANGE [TS TARGET edical device that could be tampered

ity issued a statement that "strongly
1e the use of Hospira's Symbiq
es are vulnerable to cybersecurity

“As everything turns into a computer,
computer security becomes everything security”
- Bruce Schneier

What Can We Do About It?

Program analysis

Overview

/

_

Analysis Foundations for

) 4

Configurable Software

Security Applications of
Program Analysis

~

)

Parsing [PLDI 12] Side channel attacks [PLDI 17]

Build system [ESEC/FSE 17]

-
Future Work: Analysis of
Configurable Systems

o

~

)

\

Smart contracts [PODC 17, WTSC 18]

Configuration-sensitivity
Language design and translation
Verification of configurable C

Overview

/

_

Analysis Foundations for

~

Configurable Software
/

Critical Software is Highly-Configurable

OS Kernels loT Toolkits »

i

Internet Services

=
=
=
=
e

What Do | Mean by “Configurable”?

e Build-time configuration
e C preprocessor and Makefiles
e “Software productline”

* Focus on C systems
* Linux, BusyBox, Apache, Firefox
« 2" place in IEEE Spectrum rankings
* Rise of Internet-of-things

Configurable C

|\#ifdef CONFIG_OF IRQ DOMAIN|
void irg add(int *ops) {
int irqg = *ops;

}
|#endif|

int *ops = NULL;
\#ifdef CONFIG_OF IRQ
OpsS = &lrq OpS;

|#endif }
1rqg_add(ops);

10

Plain C

3. This function
dereferences “ops” void irqg_add(int *ops) {
int irq = *ops;

1. Initialize “ops”
pointer

2. Set “ops” to
existing structure

J No problems

}

int *ops = NULL;
ops = &irq ops;

irqg add(ops);

11

‘/ Some configurations are fine

COﬂflgU rable C x Some configurations have bugs

3. Null pointer error in #1fdef CONFIG OF IRQ DOMAIN

some configurations void irqg_add(int *ops) {
int irqg = *ops;

}
1. Initialize “ops” #endif
pointer

int *ops = NULL;

2. Only set in some #1ifdef CONFIG OF IRQ
configurations ops = &irqg_ops;
#endif

irqg add(ops);

12

J Some configurations are fine

COﬂflgUFab|e C x Some configurations have bugs

#1ifdef CONFIG OF IRQ DOMAIN

void irg add(int *ops) {
int irqg = *ops;

}

#endif

Bonus defect: undefined

function breaks the build int *ops = NULL;

#ifdef CONFIG OF IRQ
ops = &irq ops;
#endif

irqg add(ops);

13

Configurable Code is Dangerous

* Defects appear in arbitrary configurations [Abal et al ASE 14]
* Configurable code more buggy [Ferreira et al SPLC 16]
* Debugging is harder [Melo et al ICPC 17]

Source Code

Program
Analysis
Tools

bitwidth scheduler page size

arm
x86 cypto

Configuration Options

Configuration
System

B

Configured
Source Code

=
N

15

- Check Configurations One-at-a-Time?

System SLoC | Options | Configurations
axTLS 3k 94 2 trillion

web server

B BusyBox 17k 993 28%/
B embedded toolkit

" Linux kernel 12mil 14,000+ < 214,000

toms in the universe: 22
o 2 L

i

- Check Configurations One-at-a-Time?

System SLoC | Options | Configurations

axTLS —a==tlion
web server‘ Goal

B BusyBox Analyze All Configurations
§| cmbedded Simultaneously

24
bk

Linux kernel 12mil 14,000+ <9 14/000

2 o et A A ol 4) - N [X
s T & ""“ el Yo E < S B S 4 '
W5 BA ~ Lol ol & N . -
’ 5 2 P : ¢ s y #, "
P e Ve et £d -
‘e b e ok e, % b o8
* . wl * & Ve i, B . R '
. R o A s
e e e 7 i,
¢ i i b2) 4 g 3
; i h by z (£
y S P s i d VERE

!
e

ated # a

b
e o

Analysis Front-End

Which source

files comprise Produces a tree

representation
of the source

the program

Build
System

Bug
finders

Parser

Code
browsers

Security
analysis

18

Configuration-Aware Front-End

, Build
Finds source Svstem Parser
files for each Y Produces an AST for
configuration Kmax [ESEC/FSE 17] SuperC [PLDI 12] all configurations

— subdir CONFIG C
—e filel.c | 1coNFIG A CONFIG A
— file2.c conFIG B

19

Build System Analysis with Kmax

Build
System

Kmax [ESEC/FSE 17]

—e subdir CONFIG C

—e filel.c 1coNFIG A

— file2.c conFIG_B

Why |s Finding All Source Files Hard?

Gerditienale daiine Adds source files to obj-y

configurations

obj-y := fork.o
ifeq ($(CONFIG A),VY)

BITS := 32
else

BITS := 64 String concatenation
endif

obj-$ (CONFIG B) += probe $(BITS).o

Generated variable names!

21

Brute Force: Run the Makefile for Each Configuration

Exponential # of
configurations

T e e W
CONFIG_A | CONFIG_B

on

off
off

obj-y := fork.o
ifeq ($(CONFIG A),y)
BITS := 32
else
BITS := 64
endif

obj-$ (CONFIG B) += probe S$(BITS).o

fork.oprobe 32.0

off fork.o
on fork.o probe_64.0
off fork.o

Duplicate
information

J

22

Kmax Finds All Configurations Efficiently

* Symbolic evaluation of conditional expressions
 Compact representation of configurations (BDDs)
CONFIG B /\ -CONFIG A

e Concrete evaluation of strings

* Exact file names
* Deduplication with symboliccomparisons

[“brobe 32.0” if BITS==32 /A CONFIG B ,
“probe 64.0” if BITS==64 /\ CONFIG B]

obj-y := fork.o
ifeq ($(CONFIG A),y)

BITS := 32
else

BITS := 64
endif

obj-$(CONFIG B) += probe $(BITS).o

Kmax

obj-y’s values

Configurations

All
CONFIG A /\ CONFIG B
-~ CONFIG A /\ CONFIG B

Source File

fork.o
probe 32.0

probe 64.0

24

Summary of Kmax

* Finds source files for all configurations efficiently

* What can we do with this information?

* Find set of files for bug finders
Eliminate dead code
Find the configurations needed to test certain files
Determine a patch’s impact on the whole system
(Google summer of code project)

Parsing All of C with SuperC

Parser

SuperC [PLDI 12]

&ZONFIGA

Isn’t Parsing a Solved Problem?

e C programs written in two languages: preprocessor and Citself
* Macros expand to arbitrary C fragments

#define for each class(c) \
for (c = highest class; c¢; ¢ = c->next)

 Directives appear between arbitrary C fragments

#1fdef CONFIG INPUT MOUSEDEV PSAUX

if (imajor(inode) == 10)
i = 31;
else
#endif

1 = iminor(inode) — 32;

SuperC to the Rescuel

* Configuration-preserving preprocessor
* Expands macros and includes headers
* But preserves conditionals

#ifdef CONFIG 64BIT |
COﬂd define BITS PER LONG 64 CESSOr!

#else

define BITS PER LONG 32

(#endif

Function-like macros

Macro definitions
Static co

Conditional expressions

Stringification
Token-pasting

32

COnd|t|Ona| Macro expands to

conditional

One operator: e ## BITS_PER_LONG

Two operations

Hoist conditional
around token-paste

le #7

#ifdef CONFIG 64BIT #ifdef CONFIG 64BIT
64 __le ## 64

#else #else
32 _le ## 32

#endif #endif

33

SuperC to the Rescuel

* Fork-merge parser

 Manages multiple subparsers
* Each subparser handles a different configuration

(1) Fork
subparsers on Pa rSi ng in /A p

conditional

T —

(2) Parse the
entire if-then-else

#ifdef CONT . o~ UT MOu ~PSAUX
" ° (1major(inode) == 10)
(3) Parse just the 31;
assignment (4) Merge and create
if the static choice node
i = i~Zuor(inode) — oe,
if (1 >= ...
CONFIG ... PSAUX ! CONFIG ... PSAUX

SuperC Performance

* How many simultaneous configurations?

e Tested on entire Linux x86 kernel source
 Thousands of preprocessor conditionals deeply nested
* No more than 10s per source file

* Novel algorithmic optimizations
* Dramatically reduce configuration explosion
* Without resorting to incomplete heuristics

How Many Simultaneous Configurations?

1.00

0.75
o o
F= Optimization 99t 100th
ﬂé 0.50 Level Percentile Percentile
& Full 21 39
0.25 Basic 33 468
None: > 16,000 on 98% of source files
0.00
0 5 10 15 20 25 30 35 40

Number of Subparsers

37

Conclusion

* Program analysis tools work on one configuration
* Exhaustive search infeasible

* Analyze all configurations simultaneously
e SuperC parses all configurations
* Kmax finds set of source files for all configurations

* Helps software tools scale to large configurable systems

Overview

/

"

Security Application:
Side-Channel Attacks

~

)

Meltdown and Spectre

Vulnerabilities in modern computers leak passwords and sensitive data.

Meltdown and Spectre exploit critical vulnerabilities in modern processors. These hardware vulnerabilities allow programs to steal

data which is currently proc - .
amaicis progrem o AT QT GO@S Nuclear: Creating a ZigBee
Chain Reaction

This might include your pa
and even business-critical d

Meltdown and Spectre worl
infrastructure, it might be po

Eyal Ronen, Colin O°Flynn, Adi Shamir and
chi-Or Weingarten

Creating an Io|

Within the next few|
densely populate ot

In this paper we de

adjacent IoT devic

that will spread ex

nuclear chain react
compatible IoT dev
particular, we devel
latform.

Differential Power Analysis

Paul Kocher, Joshua Jaffe, and Benjamin Jun

Cryptography Research, Inc.
607 Market Street, 5th Floor
San Francisco, CA 94105, USA.
http://www.cryptography.com
E-mail: {paul, josh,ben}@cryptography.com.

Abstract. Cryptosystem designers frequently assume that secrets will
be manipulated in closed, reliable computing environments. Unfortu-
nately, actual computers and microchips leak information about the op-
erations they process. This paper examines specific methods for analyz-
ing power consumption measurements to find secret keys from tamper

41

/

-

\

Plain text Security key _Encrypted LSI Encrypted text

f—
N Input >

Output > %

P

\e. -
Side-channel aftack 7/
[

Power consumption, .

fault information, Analysis /:

timing information, etc. g
Acquisition) Key is recovered!

\

W

Source: http://www.togawa.cs.waseda.ac.jp/English/research/system/system.html#sca

42

Changing password for paul.
(current) UNIX password:

Enter new UNIX password:
Retype new UNIX password:

boolean chpass(real pwd, input pwd, new_pwd, new_pwd confirm) {

int correct chars = 0;
for(int 1 = 0; 1 < input pwd.length; i++) {

if (i < real pwd.length && real pwd[i] == input pwd[i])
correct chars += 1;

Number of loop

iterations reveals correct

}
character count

boolean matches = true;
if (new_pwd.length == new_pwd confirm.length) {
for (int i = 0; i < new_pwd.length; i++)

matches = matches && (new_pwd[i] == new_pwd confirm([i]);
} else
matches = false;
return (correct chars == real pwd.length) && matches;

43

Side Channels Reduce Search Space

Password: hello

Brute force

(26 character Options)5 characters
=11,881,376 guesses

With timing channel

Char Iters Guesses

h 1 26
e 2 26
I 3 26
I 4 26
o 5 26

26 character options x 5 characters
= 130 guesses

Changing password for paul.
(current) UNIX password:

Enter new UNIX password:
Retype new UNIX password:

boolean chpass(real pwd, input pwd, new_pwd, new_pwd confizxm
int correct chars = 0; Loop iterations now

for(int 1 = 0; i < input pwd.length; i++) { independent of
if (1 < real pwd.length && real pwd[i] == input_ pwdlg
correct chars += 1; correct characters

else

return false;| correct chars += 0;

}

boolean matches = true;
if (new_pwd.length == new_pwd confirm.length) {
for (int 1 = 0; 1 < new_pwd.length; i++)
matches = matches && (new_pwd[i] == new_pwd confirm([i]);
} else
matches = false;

return (correct chars == real pwd.length) && matches;

45

Timing Channel Freedom

This means low input
\V/ TC1,702. values for each trace
in(m1)[low] = m(n2)[low]

=\

time(m1) = time(m2) £ ¢

* Runningtime does not depend on secret
* Any two traces have roughly same running time for same low input
* A 2-safety property, i.e., must relate pairs of traces to prove property

46

Reframe Timing Channel Freedom

* Function of publicinputs

only

* Non-relational:in terms of
one trace

* Implies timing channel
freedom, a relational
property

H4t YV

time(mr) = ¢ (in(w)[low]) £ ¢

Prove with Running Time Analysis

for (int 1 = 0; 1 < new pwd.length; i++) {

}

matches = matches && (new pwd[1] == new pwd confirm[i]);

¥

SiEpe Tl [Gulwani et al, PLDI 09;
Tl AGEINATRS L CAV 09; POPL 09]

time(n) = «in(m)[new_pwd]) = new_pwd.length

* Finds running time function ¢
* Implies timing channel freedom

48

Finding ¢ Is Hard

* Programs can have nested conditionals and loops
 Many brancheson publicinputs
e At any program point
* Inloop headers

* { can be piecewise with complex cases

.

input_pwd.len * 2 + new_pwd.len * 2 +3 if new_pwd.len ==new_pwd_confirm.len

input_pwd.len *2 +4 if new_pwd.len != new_pwd_confirm.len
boolean chpass(real pwd, input pwd, new pwd, new pwd confirm) H M
{ P F putp P pre * Piecewise
int correct chars = 0; 1 1
for(int 1 = 0; 1 < input pwd.length; i++) { funCtlon Wlth
if (i < real pwd.length && real pwd[i] == input pwd[i])
correct chars += 1; Complex Cases
else . .
correct chars += 0; ® Runnlng time
}
H V4
analysis can’t do
boolean matches = true; .
| if (new pwd.length == new pwd confirm.length) { | thIS We”
for (int i = 0; i1 < new_pwd.length; i++)
matches = matches && (new _pwd[i] == new_pwd confirm[i]);
} else
matches = false;
return (correct chars == real pwd.length) && matches;

50

Partition the Program

* Prove freedom of partitions
alone

* Must choose partitions
carefully

* Prove safety of partitions
separately

* Implies safety of complete
program

oolean chpass(real_pwd, input pwd,

int correct_chars
for(int 1 = 0; i <

if (i < real_pwd.length

correct_chars

correct_chars

boolean matches = true;
if (new_pwd.length ==

0;
input _pwd.length; i++) |
&& real pwd[i] ==

+= 0;

new_pwd _confirm.length)

new_pwd, new_pwd confirm) {

input _pwd[i])

51

Safety Proving Algorithm

Java program

Taint
Analysis

Refine Partitions
Partition on public
input branches

Check Safety
Exists running

time function?

Find source
of leak

Use taint analysis to get
non-secret branches

Use static running time
bounds analysis

Iteratively partition and
check safety

Continue partitioning
until all partitions safe

Find source of leak

52

Timing Channel Detection

Java program

Taint
Analysis

Refine Partitions
Partition on public
input branches

Check Safety
Exists running

time function?

Refine Partitions
Partition on secret
input branches

Check Leak
Find different
running times

—p No more

secret
branches

v

Potential
leak

53

Evaluation

e Algorithm implemented in the Blazer tool
 Static running time analysis built on an abstractinterpreter

* Usage scenario
* Lightweight pre-analysisto narrow down suspicious methods
* Apply heavyweight blazer to suspicious methods

* Benchmarks: several lines to several dozen lines
* MicroBench — 12 small, simple examples
e STAC - 6 extracted from DARPA challenge programs
* Literature— 6 adapted from literature

Safety w/Attack
Benchmark Size Time(s) Time (s)
MicroBench
array_safe 16 1.60 -
array_unsafe 14 0.16 0.70
loopBranch_safe 15 0.23 E
loopBranch_unsafe 15 0.65 1.54
nosecret_safe 7 0.35 -
notaint_unsafe 9 0.28 1.77
sanity_safe 10 0.63 -
sanity_unsafe 9 0.30 0.58
straightline_safe 7 0.21 E
straightline_unsafe 7 22.20 28.49
unixlogin_safe 16 0.86 -
unixlogin_unsafe 11 0.77 1.27
STAC
modPowl_safe 18 1.47 -
modPowl_unsafe 58 218.54 464.52
modPow2_safe 20 1.62 -
modPow2_unsafe 106 7813.68 3175892
pwdEqual _safe 16 2.70 B
pwdEqual unsafe 15 1.30 2.90
Literature
gpt14_safe 15 1.43 -
gpt14_unsafe 26 219.30 1554.64
k96 _safe 17 0.70
k96_unsafe 15 1.29 3.14
login_safe 18 6.54 -
login_unsafe 17 4.40 9.10

Size in basic blocks

Time to prove safety
* Average of 5 runs

If not safe, time to prove attack
* Average of 5 runs

A few seconds or less for most
benchmarks

e 22.20s at most for safety proving

Proved safety or leak for all.

55

Safety w/Attack

Benchmark Size Time(s) Time (s)
MicroBench

array_safe 16 1.60 -
array_unsafe 14 0.16 0.70
loopBranch_safe 15 0.23 E
loopBranch_unsafe 15 0.65 1.54
nosecret_safe 7 0.35 -
notaint_unsafe 9 0.28 1.77
sanity_safe 10 0.63 -
sanity_unsafe 9 0.30 0.58
straightline_safe 7 0.21 -
straightline_unsafe 7 22.20 28.49
unixlogin_safe 16 0.86 -
unixlogin_unsafe 11 0.77 1.27

STAC

Scalability of Leak

ldentification

18 147 _
|::g§:w: ::::tg 38 21854 464,52 l

podPow2 safe 20 162 -
modPow2_unsafe 106 7813.68 31758.92
pwdEqual _safe 16 2.70 -
pwdEqual unsafe 15 1.30 290
Literature

t14_safe 15 1.43 —

t14_unsafe 26 219.30 1554.64
k96 _safe 17 0.70
k96_unsafe 15 1.29 3.14
login_safe 18 6.54 -
login_unsafe 17 4.40 9.10

 Notable outliers
* Minutes or hours
* Related to block size

* Likely due to many
partitions

56

summary

 Side channel attacks leak secrets indirectly
* Prove freedom from timing leaks or identify leak
 Static analysis approach is highly precise

Overview

-

o

Future Work: Analysis of
Configurable Systems

~

)

[SuperC/Kmax J

g
?
o
Security Audits
& Bug Finding
Vision Impact
Elevate program analysis More reliable and secure

to configurable code. software systems

[SuperC/Kmax J

U
Configuration-
Sensitive Analysis
U
Security Audits
& Bug Finding

e Static analysis algorithms for configurable software
* Control flow, callgraph, points-to, information flow

* Challenge: configuration explosion problem

* Future contributions
* Trade offs between precision and scalability
* Empirical evaluation on real-world software
* Higher reliability of systems software

[SuperC/Kmax J

U
Configuration-
Sensitive Analysis
U
Security Audits
& Bug Finding

 Collaborations for dynamic analysis
e Optimizing configurations with Oh, Batory (UT Austin)
* iGen with Nguyen (UNL), Koc (UMD), Wei (UT Dallas)
e Off-the-shelf bug-finders with Wei (UT Dallas)

[SuperC/Kmax J
g

Sensitive Analysis and Translation

{ Configuration- JE>[Language Design }

T

Security Audits
& Bug Finding

* New C language extensionsto replace preprocessor, make
* Challenge: balancing expressivity and ease-of-analysis

* Future contributions
* Improved development ecosystem for programmers
* Persuadingsystems programmers to trust the compiler

* Collaboration opportunities
* Language designers
* Machine learning to assist translation

[SuperC/Kmax J
g

Configuration- 2 Language Design N Verification of
Sensitive Analysis and Translation Configurable C

T

Security Audits
& Bug Finding

* Developing formal semantics for configurable code
* Challenge: integrating with existing verified C toolchain

* Future contributions:
* Formal semantics of preprocessor, Makefiles
* Verified configurable systems

* Collaboration opportunities
* Formal verification experts

Overview

/

_

Analysis Foundations for

) 4

Configurable Software

Security Applications of
Program Analysis

~

)

Parsing [PLDI 12] Side channel attacks [PLDI 17]

Build system [ESEC/FSE 17]

-
Future Work: Analysis of
Configurable Systems

o

~

)

\

Smart contracts [PODC 17, WTSC 18]

Configuration-sensitivity
Language design and translation
Verification of configurable C

