
Paul Gazzillo

University of Central Florida

Oct. 27th, 2020

#ossummit

@paul_gazzillo

https://paulgazzillo.com

Finding Configuration Constraints from Kconfig, Kbuild, and the C Preprocessor

When You Come to a Fork in the Road, Take It

https://paulgazzillo.com

the kernel has tons of configuration options

2

this configurability brings maintenance challenges

over 17,000 configuration options
about 20 million source lines of code

over 20,000 C files

and growing!

3

there are serious cases of unexpected interactions
between configuration options

4

there are even more pernicious examples of bad
combinations of configuration options

5

“This exploit shows how much impact the kernel configuration can have on
how easy it is to write an exploit for a kernel bug. While simply turning on
every security-related kernel configuration option is probably a bad idea,
some of them - like the kernel.dmesg_restrict sysctl - seem to provide
a reasonable tradeoff when enabled.” - Jann Horn, Google Project Zero

first steps towards tackling the maintenance
challenges of configurability

6

given a patch, what configurations does it affect? (jmake, lawall et al)

given a bug, what configurations does it appear in? (config-bisect)

what’s a minimal configuration that includes specific source? (config-bisect)

what code is no longer configurable in the kernel? (undertaker, tarlet et al)

to test a patch, kernel maintainers
need .config files. can we automatically

generate the relevant .config files?

Julia Lawall
Inria/LIP6

a common problem: mapping code back to the
configurations that control that code

7

configuration localization:
given some program behavior, what are all the
configurations which include that behavior?

if we can automate configuration localization, then
we can enable automated tools for many problems

8

how does Kbuild work and how can
we do configuration localization?

9

what does linux’s build system do?

10

configuration option
settings (.config)

kernel binary
(vmlinuz)

build system

build system

let’s look at the phases of build process

11

configuration option
settings (.config)

kernel binary
(vmlinuz)

build system

let’s look at the phases of build process

11

Kconfigconfiguration option
settings (.config)

kernel binary
(vmlinuz)

build system

let’s look at the phases of build process

11

Kconfig Kbuild
Makefiles

configuration option
settings (.config)

kernel binary
(vmlinuz)

build system

let’s look at the phases of build process

11

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

kernel binary
(vmlinuz)

build system

let’s look at the phases of build process

11

Kconfig Kbuild
Makefiles

C
preprocessor

C compiler,
linker

configuration option
settings (.config)

kernel binary
(vmlinuz)

the build system as code generation using
metaprogramming

12

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

configuration localization is finding the inverse of
the build process

13

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

all possible
.config files

source code
locations

each phase of the build encodes rules to control
the inclusion and exclusion of source code

14

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

fs/ufs/super.c:

#ifdef CONFIG_UFS_DEBUG
/*
 * Print contents of ufs_super_block, useful for debugging
 */
static void ufs_print_super_stuff(struct super_block *sb,
 struct ufs_super_block_first *usb1,
 struct ufs_super_block_second *usb2,
 struct ufs_super_block_third *usb3)
{
 u32 magic = fs32_to_cpu(sb, usb3->fs_magic);
// ...
#endif

each phase of the build encodes rules to control
the inclusion and exclusion of source code

15

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

fs/ufs/Makefile:

obj-$(CONFIG_UFS_FS) += ufs.o
ufs-objs := balloc.o cylinder.o dir.o file.o ialloc.o inode.o \
 namei.o super.o util.o

each phase of the build encodes rules to control
the inclusion and exclusion of source code

16

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

fs/ufs/Kconfig:

config UFS_DEBUG
 bool "UFS debugging"
 depends on UFS_FS

config UFS_FS
 tristate "UFS file system support (read only)"
 depends on BLOCK

we can use boolean logic to represent the
“buildability” of code at each step

17

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

we can use boolean logic to represent the
“buildability” of code at each step

17

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

and andA(opt1, opt2, ...) B(opt1, opt2, ...) C(opt1, opt2, ...)

configuration localization then becomes the
boolean satisfiability problem

18

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

build_constraints(opt1, opt2, ...)

step 1: generate constraints for
given source code

step 2: find solutions with a SAT/SMT
solver to get .config files

using static analysis to extract
constraints from the build system

19

when you come to a fork in the road, take it

20

static analysis works by following both sides
of all conditional branches

all these tools record branch path conditions
from their target build system component

tooling

21

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

Kclause Kmax SuperC

SuperC does configuration-preserving C
preprocessing (and parsing)

22

“SuperC: Parsing All of C by Taming the Preprocessor” by
Paul Gazzillo and Robert Grimm (PLDI 2012)

https://github.com/paulgazz/superc

does macro expansion and header inclusion

but leaves preprocessor conditionals in place

stores preprocessor conditions as symbolic boolean formulas

https://github.com/paulgazz/superc

Kmax collects Kbuild Makefile conditions for each
source file’s constraints

23

“Kmax: Finding All Configurations of Kbuild Makefiles Statically” by Paul
Gazzillo (ESEC/FSE 2017)

https://github.com/paulgazz/kmax

does static analysis of the Kbuild-style Makefiles

preserves path conditions as boolean formulas

finds a formula for each source file (modulo bugs)

https://github.com/paulgazz/kmax

Kclause converts Kconfig files into logical fomulas

24

Paper still being written with students
Jeho Oh and Necip Yildiran

tool available as part of Kmax:

https://github.com/paulgazz/kmax

Kconfig combines Boolean formulas with “depends on”, “select”, etc

Kclause turns these into Boolean logic

“A depends on B” => “A implies B”

lots of subtley around reverse dependencies, choices, and more

https://github.com/paulgazz/kmax

klocalizer prototype and demo

25

klocalizer finds .config files for given source files

26

combines Kconfig and Kbuild Makefile constraints from Kclause and Kmax

(supporting preprocessor constraints is work in progress)

takes one or more source file names

constructs a boolean formula representing the file’s build conditions

produces one or more .config files that build a kernel including the file(s)

demo

27

conclusion

28

conclusion

29

the kernel’s extreme configurability brings challenges

automatic configuration localization can help automate several maintenance tasks

static analysis of the build system finds configuration constraints (Kclause, Kmax, and SuperC)

the Klocalizer prototype localizes configurations for given C files

future work: continue developing the tooling, finding configuration bugs

https://configtools.org

https://configtools.org

