NNNNNNNNNNNNNNNNNN E b dd d LI
S OPEN SOURCE SUMMIT Conference Oct. 27th, 2020
EUROPE Europe

When You Come to a Fork in the Road, Take It

Finding Configuration Constraints from Kconfig, Kbuild, and the C Preprocessor

Paul Gazzillo
University of Central Florida

&

#ossummit UCE
@paul_gazzillo o
https://paulgazzillo.com LIENYX

https://paulgazzillo.com

the kernel has tons of configuration options

Linux/x86 5.4.0 Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus
----). Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for
Search. Legend: [*] built-in [] excluded <M> module < > module capable

I *%% Compiler:
General setup
64-bit kernel
Processor type and features --->
Power management and ACPI options
Bus options (PCI etc.) --->
Binary Emulations --->
Firmware Drivers --->
Virtualization --->
General architecture-dependent options --->
Enable loadable module support --->
Enable the block layer --->
I0 Schedulers --->
Executable file formats --->
Memory Management options --->

[*] Networking support --->

v(+)

< Exit > < Help > < Save

this configurability brings maintenance challenges

over 17,000 configuration options
about 20 million source lines of code
over 20,000 C files

and growing!

there are serious cases of unexpected interactions
between configuration options

L bug type CWE
7 declaration errors:
4 undefined function -
2 undeclared identifier =
1 multiple function definitions -
undefined label -
10 resource mgmt. errors:
5 uninitialized variable 457
. ege . . . 1 memory leak 401
Variability Bugs in Highly-Configurable Systems: | use afer frec a6
2 duplicate operation 675
1 1 1 1 double lock 764
A Qualitative Analysis doblelock e Tos
11 memory errors:
4 null pointer dereference 476
IAGO ABAL, IT University of Copenhagen, Denmark 3 butfer overflow 120
3 read out of bounds 125
JEAN MELO, IT University of Copenhagen, Denmark | _ write on read only -
A . : 8 logic errors:
ST EFAN STANCIULESCU, IT University of Copenhagen, Denmark = fatal assertion violation 617
. . 2 non-fatal assertion violation 617
CLAUS BRABRAND, IT University of Copenhagen, Denmark | behavioral vielation 440
MARCIO RIBEIRO, Federal University of Alagoas, Brazil L type errors:
_ ' 2 1ncompatible types 843
ANDRZE)] WASOWSKI, IT University of Copenhagen, Denmark | wrong number of func. args. 685
I void pointer dereference —
2 dead code:
I unused variable 563
I unused function 561
1 arithmetic errors:
I numeric truncation 197
integer overflow 190
validation errors:
OS command injection 078
43 TOTAL -

there are even more pernicious examples of bad
combinations of configuration options

A cache invalidation bug in Linux memory management

Posted by Jann Horn, Google Project Zero

“This exploit shows how much impact the kernel configuration can have on
how easy it is to write an exploit for a kernel bug. While simply turning on
every security-related kernel configuration option is probably a bad idea,
some of them - like the kernel.dmesg restrict sysctl - seem to provide

a reasonable tradeoff when enabled.” - Jann Horn, Google Project Zero

first steps towards tackling the maintenance
challenges of configurability

to test a patch, kernel maintainers

need .config files. can we automatically
generate the relevant .config files?

Julia Lawall
Inria/LIP6

given a patch, what configurations does it affect? (jmake, lawall et al)
given a bug, what configurations does it appear in? (config-bisect)

what’s a minimal configuration that includes specific source? (config-bisect)

what code is no longer configurable in the kernel? (undertaker, tarlet et al)

a common problem: mapping code back to the
configurations that control that code

configuration localization:

given some program behavior, what are all the
configurations which include that behavior?

If we can automate configuration localization, then
we can enable automated tools for many problems

how does Kbuild work and how can
we do configuration localization?

what does linux’s build system do?

build system

configuration option)

) kernel binary
settings (.config)

(vmlinuz)

10

let’s look at the phases of build process

build system

configuration option)

) kernel binary
settings (.config)

(vmlinuz)

11

let’s look at the phases of build process

build system

configuration option)

) kernel binary
settings (.config)

(vmlinuz)

11

let’s look at the phases of build process

build system

configuration option) Kbuild) kernel binary
settings (.config) Makefiles (vmlinuz)

11

let’s look at the phases of build process

build system

configuration option) Kbuild C) kernel binary
settings (.config) Makefiles preprocessor (vmlinuz)

11

let’s look at the phases of build process

build system

configuration option) Kbuild C C compiler,

) kernel binary
settings (.config) Makefiles preprocessor linker

(vmlinuz)

11

the build system as code generation using
metaprogramming

. : . . configured and
configuration option) : Kbuild C)
settings (.config) Kcontig WELGCHIER preprocessor p:ss:c?:iiileed

12

configuration localization is finding the inverse of
the build process

configured and
preprocessed
source code

configuration option
settings (.config)

source code
locations

all possible
.config files

13

each phase of the build encodes rules to control
the Inclusion and exclusion of source code

C

preprocessor

fs/ufs/super.c:

#ifdef CONFIG_UFS_DEBUG
/ %k
* Print contents of ufs_super_block, useful for debugging
*/
static void ufs_print_super_stuff(struct super_block xsb,
struct ufs_super_block first xusbl,
struct ufs_super_block second xusb?2,
struct ufs _super_block third *usb3)

{

[/ .
#endif

u32 magic = fs32_to_cpu(sb, usb3->fs_magic);

14

each phase of the build encodes rules to control
the Inclusion and exclusion of source code

Kbuild
VY EVLCHIES

fs/ufs/Makefile:

obj-$(CONFIG_UFS_FS) += ufs.o
ufs—objs := balloc.o cylinder.o dir.o file.o 1alloc.o 1node.o \
namei.o super.o util.o

15

each phase of the build encodes rules to control
the Inclusion and exclusion of source code

fs/ufs/Kconfig:

config UFS_DEBUG
bool "UFS debugging"
depends on UFS_FS

config UFS_FS
tristate "UFS file system support (read only)"
depends on BLOCK

10

we can use boolean logic to represent the
“buildability” of code at each step

17

we can use boolean logic to represent the
“buildability” of code at each step

N N N4

A(opti, opt2, ...) and B(opt1l, opt2,...) and C(opti, opt2, ...)

17

configuration localization then becomes the
boolean satisfiability problem

step 1: generate constraints for
given source code

N

build_constraints(opt1, opt2, ...)

N

step 2: find solutions with a SAT/SMT
solver to get .config files

18

using static analysis to extract
constraints from the build system

when you come to a fork in the road, take it

static analysis works by following both sides
of all conditional branches

all these tools record branch path conditions
from their target build system component

20

tooling

N N N4

Kclause Kmax SuperC

SuperC does configuration-preserving C
preprocessing (and parsing)

does macro expansion and header inclusion
but leaves preprocessor conditionals in place

stores preprocessor conditions as symbolic boolean formulas

“SuperC: Parsing All of C by Taming the Preprocessor” by
Paul Gazzillo and Robert Grimm (PLDI 2012)

https://qithub.com/paulgazz/superc

22

https://github.com/paulgazz/superc

Kmax collects Kbuild Makefile conditions for each
source file’s constraints

does static analysis of the Kbuild-style Makefiles
preserves path conditions as boolean formulas

finds a formula for each source file (modulo bugs)

“Kmax: Finding All Configurations of Kbuild Makefiles Statically” by Paul
Gazzillo (ESEC/FSE 2017)

https://github.com/paulgazz/kmax

23

https://github.com/paulgazz/kmax

Kclause converts Kconfig files into logical fomulas

Kconfig combines Boolean formulas with “depends on”, “select”, etc
Kclause turns these into Boolean logic
“A depends on B” => “A implies B”

lots of subtley around reverse dependencies, choices, and more

Paper still being written with students
Jeho Oh and Necip Yildiran

tool available as part of Kmax:
https://github.com/paulgazz/kmax

24

https://github.com/paulgazz/kmax

klocalizer prototype and demo

klocalizer finds .config files for given source files

combines Kconfig and Kbuild Makefile constraints from Kclause and Kmax
(supporting preprocessor constraints is work in progress)
takes one or more source file names

constructs a boolean formula representing the file’s build conditions

produces one or more .config files that build a kernel including the file(s)

20

conclusion

conclusion

the kernel’s extreme configurability brings challenges
automatic configuration localization can help automate several maintenance tasks
static analysis of the build system finds configuration constraints (Kclause, Kmax, and SuperC)
the Klocalizer prototype localizes configurations for given C files

future work: continue developing the tooling, finding configuration bugs

https.//configtools.org

29

https://configtools.org

