
Inferring and Securing Software
Configurations Using Automated Reasoning

Paul Gazzillo

University of Central Florida

Nov. 10th, 2020ESEC/FSE Visions and Reflections 2020

https://pgazz.com @paul_gazzillo

https://pgazz.com

highly-configurable software is widespread

2

Linux kernel

• 70% of mobile devices

• 70% of IoT developers

• 40% of servers

Apache web server

• 40% of servers

billions of devices

misconfiguration vulnerabilities are prevalent

3

#6 in OWASP top ten most critical security risks

most common risk reported

“This exploit shows how much impact the kernel configuration can have on
how easy it is to write an exploit for a kernel bug.”

misconfiguration vulnerabilities are rooted in
software configuration management

4

manages change to a software system

allows customizing software without reprogramming

falls outside of classic program analysis

vision: a world without misconfiguration vulnerabilities

5

solution: formal methods to validate and generate
software configurations

6

challenges: a lack of existing specifications,
an enormous state space

7

research goals

8

create a rigorous definition of configuration specification

mechanize the generation of valid configurations

automatically discover secure configurations

Motivating Example: Optionsbleed

9

a Limit directive restricts access to HTTP methods
in an Apache webserver

10

<Limit PUT DELTE BIND>
</Limit>

optionsbleed leaks arbitrary memory contents of
an apache webserver

11

<Limit PUT DELTE BIND>
</Limit>

invalid http method exposes a
use-after-free bug

subtle interactions between configuration
mechanisms influence optionbleed’s occurrence

12

<Limit PUT DELTE BIND>
</Limit>

BIND is only valid with the
WebDAV HTTP extension

subtle interactions between configuration
mechanisms influence optionbleed’s occurrence

13

<Limit PUT DELTE BIND>
</Limit>

./configure —enable-dav

a2enmod dav
WebDAV is enabled only with a
compile-time flag and run-time

module loader

Solution Approach: Automatically Validate
and Generate Software Configurations

14

automation needs a unified global view of
configuration specifications

15

configuration options are long-lived values,
global to an entire software system

16

formalize valid configurations as constraints
among all configuration options

17

<Limit PUT DELTE BIND>
</Limit>

./configure —enable-dav

a2enmod dav

limit

module

build

formalize valid configurations as constraints
among all configuration options

17

<Limit PUT DELTE BIND>
</Limit>

./configure —enable-dav

a2enmod dav

 limit.method = PUT

or limit.method = DELETE

or (limit.method = BIND

 and build.enable-dav = True

 and module.dav = True)
limit

module

build

formalize valid configurations as constraints
among all configuration options

17

<Limit PUT DELTE BIND>
</Limit>

./configure —enable-dav

a2enmod dav

 limit.method = PUT

or limit.method = DELETE

or (limit.method = BIND

 and build.enable-dav = True

 and module.dav = True)
limit

module

build

configuration validitity is satisfiability

research tasks

18

an intermediate configuration language

formal modeling and analysis

testing and bug-finding

security and prevention

conclusion
• highly-configurable software is widespread

• misconfiguration vulnerabilities are prevalent

• vision: a world without misconfiguration

• challenges: lack of real-world specification, an enormous configuration space

• solution approach: formal modeling of software configuration

19

https://pgazz.com

@paul_gazzillosupported by NSF CCF-1941816

https://pgazz.com

