

Necip Fazil Yıldıran, Jeho Oh, Julia Lawall, and Paul Gazzillo
May 29th, 2024
To Appear: FSE 2024

Testing the Linux Kernel is Important

70% of mobile devices 70% of IoT developers 40% of servers

Configurability Makes Testing Hard

- Configuration options allow extensive reuse
- Trillions of kernel variations

Build customized software without reprogramming

Rapid Change Makes Testing Hard

Linux-next commit history

~30k mailing list messages per month

~6k commits per month, 100s per day

e.g., ~13k commits between v5.12 and v5.13

Test Robots Are the Most Successful Reporters

Most active 5.12 bug reporters

112020 000011 0 00122 10	8 - 9	
kernel test robot	184	16.1%
Syzbot	111	9.7%
Abaci Robot	107	9.4%
Dan Carpenter	44	3.9%
Hulk Robot	41	3.6%
Stephen Rothwell	28	2.5%
Randy Dunlap	19	1.7%
Kent Overstreet	12	1.1%
Guenter Roeck	11	1.0%
TOTE Robot	11	1.0%
Colin Ian King	9	0.8%
Andrii Nakryiko	8	0.7%
Juan Vazquez	7	0.6%
Arnd Bergmann	6	0.5%

Intel 0-day kernel test robot

- Suite of static and dynamic testing tools
 - compile, boot, performance, etc.
- continuously runs on new commits in linux-next

Google syzbot

- syzkaller system call fuzz tester
- continuously tests the kernel
- runs on linux-next, other versions

Typical Configurations Exclude Code Changes

Configuration	Avg. Patch Coverage
defconfig	22%
randconfig	30%
syzbot	42%

Based on 507 randomly-selected C code patches from linux-next between 2021/09/19-2022/09/18 5% margin of error 98% confidence level

Problem: How do we pick configuration files that cover new patches?

Patch Coverage

Percent of C source lines in a patchfile compiled by a configuration file

allyesconfig for Patch Coverage?

Covers 89% of patches

Not bootable, mostly for compile testing X

No variation, can miss configuration bugs X

Still fails to cover 11% of patched lines

Introducing krepair

krepair automatically modifies any configuration file to be patch covering

krepair Benefits

98.5% patch coverage (sample average)

Use any configuration file, maintains variation

<2% change to most configuration files

Configuration remains bootable

Maintains fast build times

Maintains memory footprint

How krepair Works

make defconfig make randconfig etc.

git checkout 6fc88c354f3af git show > 6fc88c354f3af.diff

Evaluating krepair

Random patches

Repair defconfig for each

Measure patch coverage and build time

Compare against unrepaired defconfig and allyesconfig

Random Patch Selection

Sample from 71k over a year (2021-2022) from linux-next

5% margin of error and 98% confidence

507 patches

Filter out non-C-source patches (documentation, scripts, etc.)

Case Study: Repairing Fuzzer Configurations

Take 40 previous syzkaller runs

Run krepair on run's configuration file

Rerun syzkaller with and without krepair

Preliminary Results

krepair's Algorithm

- 1. Analyze: find patch covering constraints
- 2. Reduce: remove options preventing patch coverage
- 3. Repair: re-add only settings that satisfy patch coverage constraints

(1) Figure Out Configuration Constraints for the Patch

(2) Remove Options Preventing Patch from Building

(3) Add Back Settings that Satisfy Constraints

Conclusion

krepair modifies configuration files for patch coverage

Makes minimal changes, preserving most original settings

Achieves very high patch coverage on average

https://github.com/paulgazz/kmax

