
 Maximizing Patch Coverage for Testing of Highly-
Configurable Software without Exploding Build Times

Necip Fazıl Yıldıran, Jeho Oh, Julia Lawall, and Paul Gazzillo
May 29th, 2024

To Appear: FSE 2024

2

70% of mobile devices
70% of IoT developers
40% of servers

Testing the Linux Kernel is Important

Linux Kernel

3

Configurability Makes Testing Hard
• Configuration options allow extensive reuse

• Trillions of kernel variations

Linux build system
generates many variations

Configuration options
enable/disable features

Build customized software
without reprogramming

4

~30k mailing list messages per month

~6k commits per month, 100s per day

e.g., ~13k commits between v5.12 and v5.13

Linux-next commit history

4

Rapid Change Makes Testing Hard

5

Test Robots Are the Most Successful Reporters

https://lwn.net/Articles/853039/

Intel 0-day kernel test robot
• Suite of static and dynamic testing tools

• compile, boot, performance, etc.
• continuously runs on new commits in linux-next

Google syzbot
• syzkaller system call fuzz tester
• continuously tests the kernel
• runs on linux-next, other versions

6

Typical Configurations Exclude Code Changes

Configuration Avg. Patch Coverage

defconfig 22%

randconfig 30%

syzbot 42%

Based on 507 randomly-selected C code patches from linux-next between 2021/09/19-2022/09/18
5% margin of error
98% confidence level

7

Problem: How do we pick configuration files
that cover new patches?

8

Patch Coverage

Percent of C source lines in a patchfile compiled by a configuration file

9

allyesconfig for Patch Coverage?
Covers 89% of patches ✔

Not bootable, mostly for compile testing X

No variation, can miss configuration bugs X

Time-consuming to build, hours vs. minutes for defconfig X

Very large memory footprint X

Still fails to cover 11% of patched lines X

10

Introducing krepair

krepair automatically modifies any
configuration file to be patch covering

11

krepair Benefits
98.5% patch coverage (sample average) ✔

Use any configuration file, maintains variation ✔

<2% change to most configuration files ✔

Configuration remains bootable ✔

Maintains fast build times ✔

Maintains memory footprint ✔

12

How krepair Works
make defconfig
make randconfig
etc.

krepair

Configuration File Patch File

git checkout 6fc88c354f3af
git show > 6fc88c354f3af.diff

Configuration File

Repaired Configuration File

Covers all lines
of the patch

13

Evaluating krepair

Random patches

Repair defconfig for each

Measure patch coverage and build time

Compare against unrepaired defconfig and allyesconfig

14

Random Patch Selection

Sample from 71k over a year (2021-2022) from linux-next

5% margin of error and 98% confidence

507 patches

Filter out non-C-source patches (documentation, scripts, etc.)

15

Preserves defconfig’s
build time

Better patch coverage
than allyesconfig

16

Case Study: Repairing Fuzzer Configurations

Take 40 previous syzkaller runs

Run krepair on run’s configuration file

Rerun syzkaller with and without krepair

17

New bugs found with
repaired configuration files

New bugs found with
old configuration files

Preliminary Results

18

krepair’s Algorithm

1. Analyze: find patch covering constraints

2. Reduce: remove options preventing patch coverage

3. Repair: re-add only settings that satisfy patch coverage constraints

19

(1) Figure Out Configuration Constraints for the Patch

patch coverage
constraint finder

patch file

constraint solver (z3)

coverage constraints

20

(2) Remove Options Preventing Patch from Building

patch coverage
constraint finder

reduced .config file

.config file reducer

patch file

constraint solver (z3)

original .config file

coverage constraints

21

(3) Add Back Settings that Satisfy Constraints

patch coverage
constraint finder

reduced .config file

.config file reducer

patch file

constraint solver (z3)

original .config file

.config file repairer

repaired .config file

coverage constraints

22

Conclusion

krepair modifies configuration files for patch coverage

Makes minimal changes, preserving most original settings

Achieves very high patch coverage on average

https://github.com/paulgazz/kmax

https://github.com/paulgazz/kmax

	Beyond the Programming Language
	Example: Linux Kernel
	Slide 3
	Slide 4
	All These Code Changes Need Testing
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Comparing to Default and Maximal
	Slide 16
	Next Steps: Improving Fuzzer Coverage
	Slide 18
	1) Figure Out Configuration Constraints for the Patch
	2) Remove Options Preventing Patch from Building
	3) Add Back Settings that Satisfy Constraints
	Slide 22

