
Brief Announcement: Proust: A Design Space for
Highly-Concurrent Transactional Data Structures

Thomas Dickerson
Brown University

thomas_dickerson@brown.edu

Paul Gazzillo
Yale University

paul.gazzillo@yale.edu

Maurice Herlihy
Brown University

maurice_herlihy@brown.edu

Eric Koskinen
Yale University

eric.koskinen@yale.edu

ABSTRACT
Most STM systems are poorly equipped to support libraries of
concurrent data structures. One reason is that they typically de-
tect conflicts by tracking transactions’ read sets and write sets, an
approach that often leads to false conflicts. A second is that exist-
ing data structures and libraries often need to be rewritten from
scratch to support transactional conflict detection and rollback.
This brief announcement introduces Proust, a framework for the
design and implementation of transactional data structures. Proust
is designed to maximize reuse of existing well-engineered libraries
by providing transactional “wrappers” to make existing thread-safe
concurrent data structures transactional. Proustian objects are also
integrated with an underlying STM system, allowing them to take
advantage of well-engineered STM conflict detection mechanisms.
Proust generalizes and unifies prior approaches such as boosting
and predication.

1 INTRODUCTION
Software Transactional Memory (STM) has become a popular al-
ternative to conventional synchronization models, both as pro-
gramming language libraries [7, 10, 15, 18] and as stand-alone sys-
tems [1, 3, 8, 13, 16, 17]. STM systems structure code as a sequence
of transactions, blocks that are executed atomically, meaning that
steps of concurrent transactions do not appear to interleave.

Most STM systems, however, are not well-equipped to support
libraries of concurrent data structures. One limitation is that STM
systems typically detect conflicts by tracking transactions’ read
sets and write sets, an approach that often leads to false conflicts,
when operations that could have correctly executed concurrently
are deemed to conflict, causing unnecessary rollbacks and serializa-
tion. Instead, it would be preferable to exploit data type semantics
to enhance concurrency by recognizing when operations do not
interfere at the semantic level, even if they might interfere at some
lower level.

Supported in part by NSF CCF Awards #1421126 and #003991.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PODC ’17, July 25-27, 2017, Washington, DC, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4992-5/17/07.
https://doi.org/10.1145/3087801.3087866

A second limitation is that existing thread-safe libraries and data
structures must typically be rewritten from scratch to accommo-
date idiosyncrasies of the underlying STM system. The prospect
of discarding so much carefully engineered concurrent software
is unappealing. Instead, it would be preferable to provide a path-
way for porting at least some existing thread-safe concurrent data
structures and algorithms into STM systems.

We are not the first to identify these limitations. Transactional
boosting [12] describes a methodology for constructing a transac-
tional “wrapper” for prior thread-safe concurrent data structures. A
boosting wrapper requires identifying which operations commute,
as well as providing operation inverses. Boosting is a stand-alone
process, not integrated with an STM. Transactional predication [2]
describes a way to leverage standard STM functionality to encom-
pass highly-concurrent sets and maps. Predication, however, does
not appear to extend beyond sets and maps, and does not provide
an explicit path to migrate legacy data structures and libraries. Soft-
ware transactional objects [14] (STO) is an STM design that provides
built-in primitives to track conflicts among arbitrary operations,
not just read-write conflicts. It does not provide a migration path
for legacy libraries.

This brief announcement introduces Proust1, a framework which
generalizes key insights from transactional boosting and predica-
tion. Proust is designed to ease reuse of existing well-engineered
libraries in two ways. First, Proust is a methodology for the design
and implementation of transactional “wrappers” that transform
existing libraries of thread-safe concurrent data structures into
transactional data structures so as to minimize false data conflicts.
Unlike predication, Proust supports objects of arbitrary abstract
type, not just sets and maps. Second, unlike boosting, Proustian
objects are integrated with an underlying STM system, allowing
them to take advantage of well-engineered STM conflict detection
mechanisms.

Two key elements are necessary to wrap an existing non-transa-
ctional concurrent data structure into an STM-compatible object.
First, as with boosting, it is necessary to characterize the com-
mutativity relationships between the various operations on that
data structure. For example, in a map, queries and updates to non-
intersecting key ranges commute. Sometimes, this determination

1This name is a portmanteau of predication and boosting, both influential prior works.
The name is also an hommage to Marcel Proust, an author famous for his exploration
of the complexities of memory.

https://doi.org/10.1145/3087801.3087866


can be performed automatically by reduction to SMT2 solvers. More-
over, in most cases these relationships can be conservatively ap-
proximated with traditional two-phase locks, without much loss in
expressivity.

Second, the wrapper must provide an update strategy, either
by providing an inverse for each operation, or a shadow copy3

functionality. Inverses and shadow copies correspond to alternative
update strategies, as discussed in Section 2.

This paper makes several contributions. First, techniques for
transforming black-box highly-concurrent linearizable data struc-
tures into transactional objects with minimal false conflicts, general-
izing key insights of boosting and predication. Second, the concept
of a conflict abstraction that translates an abstract data type’s se-
mantic notions of conflict into concrete forms that can be efficiently
managed by a generic software transactional memory run-time.
Third, systematic guidelines for choosing a transactional API for
an underlying thread-safe data structure. Effectively, the transac-
tional API must choose between optimistic or pessimistic conflict
resolution, and eager or lazy update strategies (Section 2).

In addition to these conceptual contributions, we also devel-
oped the ScalaProust prototype implementation, built on top of
ScalaSTM. It shows scalability matching existing specialized ap-
proaches, but with a much wider range of applicability (Section 3).

2 OVERVIEW

The Proust Design Space The Proust methodology,
like Boosting, Predication, and optimistic transactional boosting
(OTB) [2, 11, 12] is based on the principles that (1) synchronization
conflicts should be defined over an object’s abstract (not concrete)
state, and (2) the abstract state can be mapped to an underlying
STM mechanism by proper synchronization and an ability to roll
back changes.

By the Proust design space, we mean the following several im-
plementation choices. Concurrency control can be optimistic (as
in Predication, OTB) or pessimistic (as in Boosting). The base data
structure can be modified eagerly as the transaction executes, or
lazily postponed to commit time. Each prior work cited commits
to one fixed choice from each category, while Proust provides a
unifying structure allowing choices to be mixed and matched.

The Proust Methodology Proust detects and resolves synchro-
nization conflicts through conflict abstractions, which are (roughly
speaking) maps carrying abstract states to concurrency control
primitives provided by an underlying STM. At the concrete end,
programmers are responsible for providing a lock allocator policy
(LAP), which allocates concurrency control primitives as needed.
The LAP is either optimistic or pessimistic. A pessimistic LAP allo-
cates standard re-entrant read-write locks, while an optimistic LAP
returns an object, which maps lock invocations to operations on
standard STM memory locations, allowing the STM to detect and
manage synchronization conflicts.

Programmers also choose whether wrapped objects are modified
lazily or eagerly. A lazy strategy requires the ability to construct

2n.b. “Satisfiability modulo theories”, not “Software Transactional Memory”
3A shadow copy essentially provides copy-on-write semantics. The most effective way
to provide this functionality is type-dependent.

Proust Design Space

C
on

fli
ct

 R
es

ol
ut

io
n

Update Strategy
Eager Lazy

Pe
ss

im
is

tic
O

pt
im

is
tic - STM and inverses

- Eager/Eager
- Trivial
- Predication*

- STM and replay
- Full (prefer Lazy)
- Moderate
- OTB*

- Locks and inverses
- Full
- Difficult
- Boosting

STM Conflict Detection

R
/W

 C
on

fli
ct

s

W/W Conflicts
Eager Lazy

Ea
ge

r
La

zy SwissTM/CCSTM TL2

TinySTM

Figure 1: Design spaces for STMs and STM-integrated data structures. The top
table outlines the Proust design space, listing for each how the transactional
API is implemented, its compatibility with the STM strategies below, the dif-
ficulty of correctly synchronizing an AbstractLock implementation with the
underlying STM, and the most conceptually similar prior work. The bottom
tablemaps conflict detection strategies to popular STMs as outlined byDrago-
jevic, et al [6].

a shadow copy, while an eager strategy requires each operation
to have a declared inverse, registered as a rollback handler by the
abstract lock. If shadow copy functionality is provided, each op-
eration on the wrapped object is forwarded through a replay log.
The replay log computes the result of the operation at execution
time using the shadow copy, and registers a handler to reapply the
operation to the wrapped object.

There are many considerations in making these choices, de-
pending on the data structure’s operations, or the strengths and
weaknesses of the underlying STM system (Figure 1).

Not all combinations make sense. For example, the empty quar-
ter in Figure 1 reflects an impractical combination of choices. Some
combinations aremore complicated. For example, the eager-optimistic
combination satisfies opacity [9] only under STMs that provide ea-
ger detection of both read-write and write-write conflicts. Here,
Proust differs from Predication. While both are eager, Predication
delegates state modifications to the underlying STM, instead of
using the STM only for synchronization. Some second-order con-
siderations include the degree to which the STM’s contention man-
agement is exposed and can be coupled with traditional pessimistic
locks, and the memory overhead of allocating shadow copies on
target systems.

3 EVALUATION
We evaluated several of our map implementations for ScalaProust
with a benchmarking setup similar to that used by Bronson, et al.
for predication [2]. For each experiment, running on an Amazon



u = 0.5

o
=
2

o
=
16

Figure 2: Time to process 106 operations on concurrent maps, using a 32-core
Amazon EC2 m4.10xlarge instance, as the number of threads increases. Each
chart is the result for a particular fraction of writes and operations per trans-
action. For each chart, the x-axis is the number of threads from 0 to 32 and
the y-axis is the average time in milliseconds from 0 to 250.

EC2 m4.10xlarge instance4, we performed 106 randomly selected
operations on a shared map, split across t threads, with o operations
per transaction. A u fraction of the operations were writes (evenly
split between put and remove), and the remaining (1−u) were get.
We varied 1 ≤ t ≤ 32, 1 ≤ o ≤ 256, and u ∈ {0, 0.25, 0.5, 0.75, 1}.

The experimental results depicted in Figure 2 display the effects
of several competing trends. Initial results show that, as expected,
Proust’s performance on map operations parallelizes better than
the traditional STM approach, though not as well as the highly
engineered predication approach.

The full version of this paper also demonstrates the expressivity
of Proust by walking through the implementation of a wrapper for
a concurrent priority queue providing an efficient shadow copy
operation [4].

4 CONCLUSIONS
We believe that the Proust methodology serves a useful niche in
the transactional data structures ecosystem. Like Boosting, we of-
fer sufficient expressivity to wrap arbitrary data structures, but
with reduced design complexity (constraints are expressed as com-
mutativity of updates to abstract state elements, rather than as
pairwise commutativity rules between operations). Furthermore,
our well-characterized design-space permits the use of different
synchronization and update strategies to selectively optimize the
performance of wrapped data structures for different STMs and
different expected work-loads.

The full version of this paper further elaborates on a number of
topics treated only briefly here, including techniques for implement-
ing shadow copies, a formalization of conflict abstraction, opacity

4https://aws.amazon.com/blogs/aws/the-new-m4-instance-type-bonus-price-
reduction-on-m3-c4/

correctness arguments for Proustian objects, and an example wrap-
per for concurrent priority queues. [5]

REFERENCES
[1] A.-R. Adl-Tabatabai, C. Kozyrakis, and B. Saha. Transactional programming in

a multi-core environment. In K. A. Yelick and J. M. Mellor-Crummey, editors,
PPoPP, page 272. ACM, 2007.

[2] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. Transactional predication:
High-performance concurrent sets and maps for stm. In Proceedings of the 29th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC
’10, pages 6–15, New York, NY, USA, 2010. ACM.

[3] L. Dalessandro, M. F. Spear, andM. L. Scott. Norec: streamlining stm by abolishing
ownership records. In Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’10, pages 67–78, New
York, NY, USA, 2010. ACM.

[4] T. D. Dickerson. Fast snapshottable concurrent braun heaps. arXiv preprint
arXiv:1705.06271, 2017.

[5] T. D. Dickerson, P. Gazzillo, E. Koskinen, and M. Herlihy. Proust: A de-
sign space for highly-concurrent transactional data structures. arXiv preprint
arXiv:1702.04866, 2017.

[6] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretching transactional memory.
In ACM sigplan notices, volume 44, pages 155–165. ACM, 2009.

[7] D. Goodman, B. Khan, S. Khan, M. Luján, and I. Watson. Software transactional
memories for scala. Journal of Parallel and Distributed Computing, 73(2):150 –
163, 2013.

[8] J. E. Gottschlich, M. Vachharajani, and J. G. Siek. An efficient software transac-
tional memory using commit-time invalidation. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO), April 2010.

[9] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming (PPoPP’08), pages 175–184, New York, NY, USA, 2008. ACM.

[10] T. Harris, S. Marlow, S. L. P. Jones, and M. Herlihy. Composable memory transac-
tions. Commun. ACM, 51(8):91–100, 2008.

[11] A. Hassan, R. Palmieri, and B. Ravindran. Optimistic transactional boosting.
In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’14, pages 387–388, New York, NY, USA, 2014.
ACM.

[12] M. Herlihy and E. Koskinen. Transactional boosting: a methodology for highly-
concurrent transactional objects. In Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and practice of parallel programming, PPoPP ’08, pages 207–216,
New York, NY, USA, 2008. ACM.

[13] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer. Software transac-
tional memory for dynamic-sized data structures. In Proceedings of the symposium
on principles of distributed computing, pages 92–101, New York, NY, USA, 2003.
ACM.

[14] N. Herman, J. P. Inala, Y. Huang, L. Tsai, E. Kohler, B. Liskov, and L. Shrira. Type-
aware transactions for faster concurrent code. In Proceedings of the Eleventh
European Conference on Computer Systems, EuroSys ’16, pages 31:1–31:16, New
York, NY, USA, 2016. ACM.

[15] Intel Corporation. Intel C++ STM Compiler, Prototype Edi-
tion. Web. Retrieved from http://software.intel.com/en-us/articles/
intel-c-stm-compiler-prototype-edition/, 20 November 2011.

[16] V. J. Marathe and M. Moir. Toward high performance nonblocking software
transactional memory. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, pages 227–236,
New York, NY, USA, 2008. ACM.

[17] T. Riegel, C. Fetzer, and P. Felber. Time-based transactional memory with scalable
time bases. In Proceedings of the nineteenth annual ACM symposium on Parallel
algorithms and architectures, SPAA ’07, pages 221–228, New York, NY, USA, 2007.
ACM.

[18] The Deuce STM Group. Deuce stm - java software transactional memory. web.
Retrieved from http://www.deucestm.org/documentation, 20 November 2011.

https://aws.amazon.com/blogs/aws/the-new-m4-instance-type-bonus-price-
reduction-on-m3-c4/
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/
http://www.deucestm.org/documentation

	Abstract
	1 Introduction
	2 Overview
	3 Evaluation
	4 Conclusions
	References

