
To Appear at PODC 2017

Abstraction:
Distributed Ledger

2

Append-only list of events

Append-only list of events

Not just financial

Not just financial
Everyone agrees on content
Everyone agrees on content

Tamper-proof!
Tamper-proof!

Implementation: Blockchain

3

this
happened

hashes &
signatures

this
happened

hashes &
signatures

this
happened

hashes &
signatures

Implementation: Blockchain

4

this
happened

hashes &
signatures

this
happened

hashes &
signatures

this
happened

hashes &
signatures

Tamper-proofTamper-proof

5

Permissionless BlockchainsPermissionless Blockchains

Bitcoin, Ethereum, …

Bitcoin, Ethereum, …

Anyone can participate

Anyone can participate

No central authority

No central authority

Opinion: shiny, but likely less influential than … Opinion: shiny, but likely less influential than …

Partly a myth:
Blocksize fork
Blocksize fork

Version 0.7/0.8 fork
Version 0.7/0.8 fork

$54M DAO theft & fork
$54M DAO theft & fork

6

Permissioned BlockchainsPermissioned Blockchains

Securities trading, registry of deeds , …

Securities trading, registry of deeds , …

Participants vetted

Participants vetted

Governance easier because authority

Governance easier because authority

Opinion: likely to have more pervasive influenceOpinion: likely to have more pervasive influence

7

Permissioned BlockchainsPermissioned Blockchains

Securities trading, registry of deeds , …

Securities trading, registry of deeds , …

Participants vetted

Participants vetted

Governance easier because authority

Governance easier because authority

Opinion: likely to have more pervasive influenceOpinion: likely to have more pervasive influence

Discussion assumes permissionless
because more challenging.

Discussion assumes permissionless
because more challenging.

Clients ….Clients ….

Miners …Miners …

Validators …Validators …

Clients ….Clients ….

send transactions …send transactions …

to miners.to miners.

Miners …Miners …

assemble transactions …assemble transactions … into blocks.into blocks.

Miners …Miners …

do distributed consensus to pick one block …do distributed consensus to pick one block …
Agnostic about how.Agnostic about how.

consensus
winnner

end of
blockchain

to append to the
blockchain.

to append to the
blockchain.

tim
e

end of
blockchain

Validators …Validators …

Other miners, clients, caches …Other miners, clients, caches …

check hashes, signaturescheck hashes, signatures

OK, we left out some details …OK, we left out some details …

15

Smart ContractsSmart Contracts

Ledger + Turing-complete scripting language?Ledger + Turing-complete scripting language?

“Computer protocols that facilitate, verify, or
enforce the negotiation or performance of
a contract, or that make a contractual
clause unnecessary” (Wikipedia)

“Computer protocols that facilitate, verify, or
enforce the negotiation or performance of
a contract, or that make a contractual
clause unnecessary” (Wikipedia)

16

Procedure for Thread i
contract Ballot {
 mapping(address => Voter)
 public voters;
 … // more state decls
 function vote(uint proposal)
 Voter sender = voters[msg.sender];
 if (sender.voted)
 throw;
 sender.voted = true;
 sender.vote = proposal;
 proposals[proposal].voteCount
 += sender.weight;
 }
 …
}

Art of Multiprocessor Programming

Looks like an object in a languageLooks like an object in a language

17

Procedure for Thread i
contract Ballot {
 mapping(address => Voter)
 public voters;
 … // more state decls
 function vote(uint proposal)
 Voter sender = voters[msg.sender];
 if (sender.voted)
 throw;
 sender.voted = true;
 sender.vote = proposal;
 proposals[proposal].voteCount
 += sender.weight;
 }
 …
}

Art of Multiprocessor Programming

Long-lived stateLong-lived state

Tracks who can vote, who voted, choices.Tracks who can vote, who voted, choices.

Built-in data types: maps, arrays, scalars.Built-in data types: maps, arrays, scalars.

18

Procedure for Thread i
contract Ballot {
 mapping(address => Voter)
 public voters;
 … // more state decls
 function vote(uint proposal)
 Voter sender = voters[msg.sender];
 if (sender.voted)
 throw;
 sender.voted = true;
 sender.vote = proposal;
 proposals[proposal].voteCount
 += sender.weight;
 }
 …
}

Art of Multiprocessor Programming

Functions to manipulate stateFunctions to manipulate state

Vote for a particular proposalVote for a particular proposal

19

Procedure for Thread i
contract Ballot {
 mapping(address => Voter)
 public voters;
 … // more state decls
 function vote(uint proposal)
 Voter sender = voters[msg.sender];
 if (sender.voted)
 throw;
 sender.voted = true;
 sender.vote = proposal;
 proposals[proposal].voteCount
 += sender.weight;
 }
 …
}

Art of Multiprocessor Programming

Who is voting?Who is voting?

20

Procedure for Thread i
contract Ballot {
 mapping(address => Voter)
 public voters;
 … // more state decls
 function vote(uint proposal)
 Voter sender = voters[msg.sender];
 if (sender.voted)
 throw;
 sender.voted = true;
 sender.vote = proposal;
 proposals[proposal].voteCount
 += sender.weight;
 }
 …
}

No voting twiceNo voting twice

21

Procedure for Thread i
contract Ballot {
 mapping(address => Voter)
 public voters;
 … // more state decls
 function vote(uint proposal)
 Voter sender = voters[msg.sender];
 if (sender.voted)
 throw;
 sender.voted = true;
 sender.vote = proposal;
 proposals[proposal].voteCount
 += sender.weight;
 }
 …
}

Record voteRecord vote

Miners assemble contracts …Miners assemble contracts …

Miners assemble contracts …Miners assemble contracts …

state state state state

Apply them one-at-a-time to compute new stateApply them one-at-a-time to compute new state

Block has contracts & new stateBlock has contracts & new state

state

state
state

state

state

state

state
Blocks include

contracts & states
Blocks include

contracts & states

tim
e

state state state state

state

Validators replay all block contracts in order …Validators replay all block contracts in order …

state
state

state

state

state

state

… for every block… for every block

Validators replay all block contracts in order …Validators replay all block contracts in order …

Contracts re-executed for How Long?

forever

Every validator eventually executes every contractEvery validator eventually executes every contract

Contracts re-executed for How Long?

sequentially

Contracts re-executed for How Long?

Miners …Miners …

Execute block’s contracts sequentiallyExecute block’s contracts sequentially

Paid by client per stepPaid by client per step

High latency = competitive disadvantageHigh latency = competitive disadvantage

Validators …Validators …

Execute every block’s contracts sequentiallyExecute every block’s contracts sequentially

Not paidNot paid

Every validator, every contract, foreverEvery validator, every contract, forever

Why is sequential execution so wrong?Why is sequential execution so wrong?

Poor throughputPoor throughput

Competitive disadvantage for minersCompetitive disadvantage for miners

Cannot exploit multicore technologyCannot exploit multicore technology

Naïve Concurrency?Naïve Concurrency?

NopeNope

Inconsistent shared stateInconsistent shared state

Voters could vote twiceVoters could vote twice

Add explicit concurrency to the language?Add explicit concurrency to the language?

Locks!
Locks! Threads!

Threads! Prioritie
s!

Prioritie
s!

Add explicit concurrency to the language?Add explicit concurrency to the language?

Locks!
Locks! Threads!

Threads! Prioritie
s!

Prioritie
s!

That reminds me of a story …That reminds me of a story …

NopeNope

37

DAO = Decentralized Autonomous OrganizationDAO = Decentralized Autonomous Organization

No managers or board of directorsNo managers or board of directors

Controlled by smart contacts and investor votingControlled by smart contacts and investor voting

Invests in other businesses: about $50 Million capitalInvests in other businesses: about $50 Million capital
In Ether cryptocurrencyIn Ether cryptocurrency

38

DAO = Decentralized Autonomous OrganizationDAO = Decentralized Autonomous Organization

No managers or board of directorsNo managers or board of directors

Controlled by smart contacts and investor votingControlled by smart contacts and investor voting

Invests in other businesses: about $50 Million capitalInvests in other businesses: about $50 Million capital
In Ether cryptocurrencyIn Ether cryptocurrency

“code is law”“code is law”

39

Much hyperventilation about possible
future of finance

Much hyperventilation about possible
future of finance

40

Schematic DAO Code

Art of Multiprocessor Programming

function withdraw(uint amount) {
 client = msg.sender;
 if (balance[client] >= amount} {
 if (client.call.sendMoney(amount)) {
 balance[client] -= amount;
 }}}

41

Schematic DAO Code

Art of Multiprocessor Programming

function withdraw(uint amount) {
 client = msg.sender;
 if (balance[client] >= amount} {
 if (client.call.sendMoney(amount)) {
 balance[client] -= amount;
 }}}

Client wants to transfer own moneyClient wants to transfer own money

42

Schematic DAO Code

Art of Multiprocessor Programming

function withdraw(uint amount) {
 client = msg.sender;
 if (balance[client] >= amount} {
 if (client.call.sendMoney(amount)) {
 balance[client] -= amount;
 }}}

Which client?Which client?

43

Schematic DAO Code

Art of Multiprocessor Programming

function withdraw(uint amount) {
 client = msg.sender;
 if (balance[client] >= amount} {
 if (client.call.sendMoney(amount)) {
 balance[client] -= amount;
 }}}

Does client have enough money?Does client have enough money?

44

Schematic DAO Code

Art of Multiprocessor Programming

function withdraw(uint amount) {
 client = msg.sender;
 if (balance[client] >= amount} {
 if (client.call.sendMoney(amount)) {
 balance[client] -= amount;
 }}}

Transfer the money by calling another contract …Transfer the money by calling another contract …

Schematic DAO Code

Debit client’s balance.Debit client’s balance.

function withdraw(uint amount) {
 client = msg.sender;
 if (balance[client] >= amount} {
 if (client.call.sendMoney(amount)) {
 balance[client] -= amount;
 }}}

45
Art of Multiprocessor Programming

Let’s rewind …Let’s rewind …

46
Art of Multiprocessor Programming

function withdraw(uint amount) {
 client = msg.sender;
 if (balance[client] >= amount} {
 if (client.call.sendMoney(amount)) {
 balance[client] -= amount;
 }}}

function sendMoney(uint amount) {
 balance += amount
 msg.sender.call.transfer(amount)
 ...
}

Transfer the money by calling another contract …Transfer the money by calling another contract …

47
Art of Multiprocessor Programming

function withdraw(uint amount) {
 client = msg.sender;
 if (balance[client] >= amount} {
 if (client.call.sendMoney(amount)) {
 balance[client] -= amount;
 }}}

function sendMoney(uint amount) {
 balance += amount
 msg.sender.call.transfer(amount)
 ...
}

Credit accountCredit account

48
Art of Multiprocessor Programming

function withdraw(uint amount) {
 client = msg.sender;
 if (balance[client] >= amount} {
 if (client.call.sendMoney(amount)) {
 balance[client] -= amount;
 }}}

function sendMoney(uint amount) {
 balance += amount
 msg.sender.call.withdraw(amount)
 ...
}

Wait, what?Wait, what?

Client makes re-entrant withdraw request!Client makes re-entrant withdraw request!

49
Art of Multiprocessor Programming

function withdraw(uint amount) {
 client = msg.sender;
 if (balance[client] >= amount} {
 if (client.call.sendMoney(amount)) {
 balance[client] -= amount;
 }}}

function sendMoney(uint amount) {
 balance += amount
 msg.sender.call.withdraw(amount)
 ...
}

50
Art of Multiprocessor Programming

function withdraw(uint amount) {
 client = msg.sender;
 if (balance[client] >= amount} {
 if (client.call.sendMoney(amount)) {
 balance[client] -= amount;
 }}}

function sendMoney(uint amount) {
 balance += amount
 msg.sender.call.withdraw(amount)
 ...
}

Second time around, balance still looks OK …Second time around, balance still looks OK …

51
Art of Multiprocessor Programming

function withdraw(uint amount) {
 client = msg.sender;
 if (balance[client] >= amount} {
 if (client.call.sendMoney(amount)) {
 balance[client] -= amount;
 }}}

function sendMoney(uint amount) {
 balance += amount
 msg.sender.call.withdraw(amount)
 ...
}

Send money again …Send money again …
and again and again …and again and again …

52

“ The attack is a recursive calling vulnerability,
where an attacker called the “split” function, and

then calls the split function recursively …”

“ The attack is a recursive calling vulnerability,
where an attacker called the “split” function, and

then calls the split function recursively …”

This happenedThis happened

The fix?The fix?

53
Art of Multiprocessor Programming

54
Art of Multiprocessor Programming

Just kidding about that “code is law” thing …Just kidding about that “code is law” thing …

End of digression.End of digression.

Please pop your stacks.Please pop your stacks.

Because concurrency is hardBecause concurrency is hard

Concurrency via
Static Analysis?
Concurrency via
Static Analysis? These contracts never

conflict, so it’s safe to run
them concurrently

Concurrency via
Static Analysis?
Concurrency via
Static Analysis? These contracts never

conflict, so it’s safe to run
them concurrently

Undecidable in theory & Intractable in practiceUndecidable in theory & Intractable in practice

Because contracts call other contracts …Because contracts call other contracts …

NopeNope

Dynamic call graph …Dynamic call graph …

Might have to inspect every contract everMight have to inspect every contract ever

TransactionsTransactions

Transactional MemoryTransactional Memory

Instrument data structures to detect conflict at run-timeInstrument data structures to detect conflict at run-time

Miners execute contracts concurrentlyMiners execute contracts concurrently

Conflict? Block or roll back. Conflict? Block or roll back.

Serializable concurrent executionSerializable concurrent execution
Equivalent to some

serial execution
Equivalent to some

serial execution

TMW April 2010

balance[“Alice”] += sum
IntentionIntention

Miner threadMiner thread

TMW April 2010

balance[“Alice”] += sum

Abstract lock for “Alice”Abstract lock for “Alice”

TMW April 2010

balance[“Alice”] += sum

Abstract lock for “Alice”Abstract lock for “Alice”

Blocks operations that do not commuteBlocks operations that do not commute

balance[“Alice”] = newBal

TMW April 2010

balance[“Alice”] += sum

Abstract lock for “Alice”Abstract lock for “Alice”

Allow concurrent operations that do commuteAllow concurrent operations that do commute

balance[“Bob”] = newBal

Abstract lock for “Bob”Abstract lock for “Bob”

TMW April 2010

balance[“Alice”] += sum

Abstract lock for “Alice”Abstract lock for “Alice”

balance[“Alice”] -= sum
Undo LogUndo Log

Register inverse in undo logRegister inverse in undo log
Undoes updates to “Alice” onlyUndoes updates to “Alice” only

TMW April 2010

balance[“Alice”] += sum

Abstract lock for “Alice”Abstract lock for “Alice”

balance[“Alice”] -= sum
Undo LogUndo Log

Carry out operationCarry out operation

Release lockRelease lock

TMW April 2010

balance[“Alice”] += sum

balance[“Alice”] -= sum
Discard LogDiscard Log

Success (commit)Success (commit)

TMW April 2010

balance[“Alice”] += sum

balance[“Alice”] -= sum
Apply undo LogApply undo Log

Failure (abort)Failure (abort)

Release lockRelease lock

Risks to minersRisks to miners

Conflict resolution means delayConflict resolution means delay

Delay = competitive disadvantage vs rivalsDelay = competitive disadvantage vs rivals

Not paid for aborted stepsNot paid for aborted steps

Benefits to minersBenefits to miners

Low conflict means low latencyLow conflict means low latency

Low latency = competitive advantage vs rivalsLow latency = competitive advantage vs rivals

Lower energy, better HW usage, etc.Lower energy, better HW usage, etc.

ValidatorsValidators

Cannot mimic minersCannot mimic miners

Because parallel executions non-deterministicBecause parallel executions non-deterministic

Might find a different serializable scheduleMight find a different serializable schedule

I have posted my serializable
concurrent schedule for

these contracts in the block!

Replay miner’s schedule

Replay miner’s schedule

DeterministicDeterministic

CheckableCheckable

No locks or synchronizationNo locks or synchronization

Work-stealing for flexibilityWork-stealing for flexibility

Use: 0Use: 0

Use: 1Use: 1

Use: 0Use: 0

Locks track number
of times acquired

Locks track number
of times acquired

Use: 0Use: 0

Use: 1Use: 1

Use: 0Use: 0

0

0

10

Threads track use
counts seen

Threads track use
counts seen

0 0

10parallel

Can reconstruct
“happens-before” graph
Can reconstruct
“happens-before” graph

seq
u

en
ti

a l

Fork-Join Parallelism

75

Similar to CILK modelSimilar to CILK model

Easy to schedule
efficiently
Easy to schedule
efficiently

Can check validityCan check validity

No locks, undo, etc.No locks, undo, etc.

Why should I share
my highly-parallel
schedule with
rivals?

Bigger reward for more parallel schedules?Bigger reward for more parallel schedules?

Not an issue in permissioned systemsNot an issue in permissioned systems

Benchmarks

4-core 3.07GHz Intel Xeon W35504-core 3.07GHz Intel Xeon W3550

Available hardware

4-core 3.07GHz Intel Xeon W35504-core 3.07GHz Intel Xeon W3550

JVMJVM

Ethereum VM not multithreaded

4-core 3.07GHz Intel Xeon W35504-core 3.07GHz Intel Xeon W3550

JVMJVM

ScalaScala

Lots of useful libraries

4-core 3.07GHz Intel Xeon W35504-core 3.07GHz Intel Xeon W3550

JVMJVM

ScalaScala

ScalaSTMScalaSTM

Basic transaction support

4-core 3.07GHz Intel Xeon W35504-core 3.07GHz Intel Xeon W3550

JVMJVM

ScalaScala

ScalaSTMScalaSTM

Proust Boosting LibraryProust Boosting Library

Abstract locks, undo logs, etc….

BenchmarksBenchmarks

JVM with JIT turned offJVM with JIT turned off

3 cores (1 more reserved for GC)3 cores (1 more reserved for GC)

Single-benchmark blocksSingle-benchmark blocks

Tunable Conflict rateTunable Conflict rate

Mixed-benchmark blocksMixed-benchmark blocks

BallotBallot

From Solidity documentationFrom Solidity documentation

Voters register, voteVoters register, vote

Benchmark: all voters registered, vote onlyBenchmark: all voters registered, vote only

Tunable Conflict = double votingTunable Conflict = double voting

Varying Transactions per BlockVarying Transactions per Block

Varying Levels of ConflictVarying Levels of Conflict

SimpleAuctionSimpleAuction

From Solidity documentationFrom Solidity documentation

Bidders bid, request refunds when overBidders bid, request refunds when over

Tunable Conflict = bidPlusOne() vs refundTunable Conflict = bidPlusOne() vs refund

Varying Transactions per BlockVarying Transactions per Block

Varying Levels of ConflictVarying Levels of Conflict

EtherDocEtherDoc

From websiteFrom website

Tracks Document Metadata (including owner)Tracks Document Metadata (including owner)

Tunable Conflict = transfer vs queryTunable Conflict = transfer vs query

Varying Transactions per BlockVarying Transactions per Block

Varying Levels of ConflictVarying Levels of Conflict

MixedMixed

All of the aboveAll of the above

Equal proportionsEqual proportions

Varying Transactions per BlockVarying Transactions per Block

Varying Levels of ConflictVarying Levels of Conflict

Conclusions

Speculation speeds up mining when …Speculation speeds up mining when …

Threads kept busyThreads kept busy

Conflict rate moderateConflict rate moderate

Improvements with only 3 threadsImprovements with only 3 threads

Future Work

Multithreaded EVM?

Multithreaded EVM?

Ethereum compatibility?

Ethereum compatibility?
More threads?
More threads?

Incentives?
Incentives?

Finer-grained concurency?
Finer-grained concurency?

Other concurrency mechanisms?

Other concurrency mechanisms?

