To Appear at PODC 2017

ack
con®r?

ents .-

e v



Jan. 1,

lan. .

= APP et

Jan. 8, 20X3
lan. 10, 20X3

Jan. 12, 20X3

Abstraction:
Distributed Ledger

Balancefs
] n\\l i
d oaaru

Paid rent

Faid bills
Paid tax

Collected receivable

50,000
60,000
65 000
58,000
55,000

59 000




Implementation: Blockchain
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Implementation: Blockchain

Tamper-proof

hashes & hashes &
signatures signatures




T_"

ef e

0.7/0.8 fork Slocksi-.
1 & fork 27K

yersion
$5AM DAO theft

V& ' \;L/,?,‘




- =
-_— —

‘I Permissioned Blockchains




Discussion assumes permissionless
because more challengmg

Opinion: likely to have more pervasive influence



Miners ...

=

Validators ...




send transactions ...

‘ to miners.




*
*

Miners ...

&

assemble transactions ... Into blocks.

C




do distributed consensus to nick one block ...
Agnostic about how.




end of

blockchain
consensus to append to the

winnner blockchain.




¢ Other miners, clients, caches ...

end of
blockchain

check hashes, signatures



OK, we left out some detalls ...

Rube Goldbergls2
Inventions .




Smart Contracts

“Computer protocols that faC|I|tate verify, or
enforce the negotiation or performance of

a contract, or that make a contractual
clause unnecessary” (W|k|ped|a) NG
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contract Ballot {
mapping(address => Voter)
public voters;
.. // more state decls
function vote(uint proposal)
Voter sender = voters[msg.sender];
if (sender.voted)
throw;

sender.voted = true;
sender.vote = proposal;

proposals[proposal].voteCount
+= sender .welight;

Looks like an object in a language

Art of Multiprocessor Programming




mapping(address => Voter)
public voters;
.. // more state decls
furjctiop”vote(uint proposal)
¥ sender = voters|[msg.sender];
1T (sender.voted)

Long-lived state

=rer—vored = true;

Built-in data types: maps, arrays, scalars.




contract Ballot {
mapping(address => Voter)
public voters;

-nder.voted)

Functions to manipulate state

sender.vote = proposal;

\Vote for a partlcular proposal [P tecount

e, =) -

}




contract Ballot {

mapping(address => Voter)
public voters;
.. // more state decls
[ 0] vOLE L ULl DY OpPOSc
Voter sender = voters[msg.sender]

sender.voted = true;
sender.vote = propo

proposals|[proposal]

+= sender.welight;




contract Ballot {

mapping(address => Voter)

public voters;

.. // more state decls
function vote(uint proposal)

= afers[msg.sender];
if (sender.voted)
throw;

proposals[pr&ppsal].voteCount
+= sender.weyLght;

No voting twice




contract Ballot {
mapping(address => Voter)
public voters;

. // more state (e
function vote(uint 1
Voter sender = voters|mg4y.sender];

1f (sender.voted)
throw;

rue;

sender.vote = proposal;

proposals[proposal].voteCount
+= sender .welight;




Miners assemble contracts ...




Miners assemble contracts ...

Apply them one-at-a-time to compute new state

state state state » -




Block has contracts & new state




Blocks include
contracts & states




Validators replay all block contracts in order ...

¢
state state state » -



Validators replay all block contracts in order ...

:

... for every block



Contracts re-executed for How Long?



Contracts re-executed for How Long?
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Every validator eventually executes every contract




Contracts re-executed for How Long?

sequentially




Execute block’s contracts sequentially

Paid by client per step

High latency = competitive disadvantage



Validators ...

Execute every block’s contracts sequentially

Every validator, every contract, forever



Why Is sequential execution so wrong?

Poor throughput | IS est s el g =

Competitive disadvantage for miners

Cannot exploit multicore




Naive Concurrency?

Inconsistent shared state B

- ﬂ".__

Voters could vote twice



Add explicit concurrency to the language?




That reminds me of a story ...




Invests in other businesses: ahout $50 Million capital
In Ether cryptocurrency

No managers or board of directors
\ N

Controlled by smart contacts and investor voting

on-
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“‘code Is law”
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oo Much hyperventilation about possible
e future of finance
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Schematic DAO Code

function withdraw(uint amount) {
client = msg.sender;
1f (balance[client] >= amount} {

1f (client.call.sendMoney(amount)) {
balance[client] -= amount;

138,

Art of Multiprocessor Programming



Schematic DAO Code

function withdraw(uint amount) {

Client wants to transfer own money

Art of Multiprocessor Programming



Schematic DAO Code

client = msg.sender; -

Which client?

Art of Multiprocessor Programming



Schematic DAO Code

if (balance[client] >= amount} { -

Does client have enough money?

Art of Multiprocessor Programming



Schematic DAO Code

1f (client.call.sendMoney(amount

Transfer the money by calling another contract ...

Art of Multiprocessor Programming






function withdraw(uint amount) {
client = msg.sender;
if (balance[client] >= amount} {
1f (client.call.sendMoney(amount
balance[client] -= amount;

133,

Transfer the money by calling another contract ...

function sendMoney(uint amount) {
balance += amount
msg.sender.call. transfer (amount)




1f (client.call.sendMoney(amount ,

| &

Credit account

balance += amount




function withdraw(uint amount) {
client = msg.sender;
if (balance[client] >= amount} {
1f (client.call.sendMoney(amount ,
balance[client] -= amount;

11}

| &

Client makes re-entrant withdraw request!

function sendMoney(uint amount) {
balance += amount
msg.sender.call.withdraw(amount) -

¥




function withdraw(uint amount) {
client = msg.sender;
1f (balance[client] >= amount} {
1f (client.call.sendMoney(amount ,
balance[client] -= amount;

33}

| &

msg.sender.call.withdraw(amount)




function withdraw(uint amount) {
client = msg.sender;
if (balance[client] >= amount} { -
i1f (client.call.sendMoney(amount ;
balance[client] -= amount;

133,

Second time around, balance still looks OK ...

function sendMoney(uint amount) {
balance += amount
msg.sender.call.withdraw(amount)




function withdraw(uint amount) {
client = msg.sender;
if (balance[client] >= amount} {
if (client.call. sendMoney(amounh
balance[client] -= amount;

133,

Send money again ...

and again and again ...

function sendMoney(uint amount) {
balance += amount
msg.sender.call.withdraw(amount) -

¥
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Because concurrency is hard = .« .
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End of digression. .. “*
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Please pop your stacks.



Concurrency via
Static Analysis?

e conflict, so it’s safe to run
L them concurrently

These contracts never




Concurrency via
Static Analysis?

B
,&
§ .
Undecidable in theory & Intractable in practice

These contracts never
conflict, so it’s safe to run

them concurrently

Because contracts call other contracts ...

iy, T 3

v

Dynamic call graph ...
FAG

ight have to Inspect every contract ever

, L =




Transactions
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balance[“Alice” ] += sSuu

Miner thread

TMW April 2010



balance[“Alice”] += sum

Abstract lock for “Alice”

TMW April 2010



balance[“Alice”] = newBal:

Blocks operations that do not commute

TMW April 2010




balance[“Alice”] += sum

Abstract lock for “Alice”

@ﬂ 6 Abstract lock for “Bob”

balance[“Bob”] = newBal

Allow concurrent operations that do commute

TMW April 2010




balance[“Alice”] += sum

Abstract lock for “Alice”

ibalance

4 4 A 4

Undoes updates to “Alice” only

TMW April 2010



balance[“Alice”] += sum

Abstract lock for “Alice”

I balance[“Alice” ]

e

D Carry out operation

TMW April 2010



Success (commit)

balance[“Alice”] += sum

Release lock

ibalance

TMW April 2010



Failure (abort)

balance[“Alice”] += sum

Release lock

ibalance
-;
--

TMW April 2010



L

Conflict resolution means delay
Delay = competitive disadvantage vs rivals

Not paid for aborted steps




Benefits to miners

Low conflict means low latency
Low latency = competitive advantage vs rivals

Lower energy, better HW usage, etc.




Validators

Cannot mimic miners

Because parallel executions non-deterministic

Might find a different serializable schedule




| have posted my serializable
concurrent schedule for
these contracts in the block!

Replay miner’s schedule




Replay miner’s schedule

v/

Checkable

No locks or synchronization

Work-stealing for flexibility




Locks track number
of times acquired




Use: O

fem 4

fia

i

Threads track use
counts seen



I !! parallel

Can reconstruct
“*happens-before” graph

lenuanbas



Fork-Join Parallelism

Similar to CILK model

7 Easy to schedule
efficiently

Can check validity

O
.\l No locks, undo, etc.

?
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Why should | share =
my highly-parallel
schedule with
. rivals?

i Ty

Bigger rew

ard for more parallel schedule







Avalilable hardware

4-core 3.07GHz Intel Xeon W3550



Ethereum VM not multithreaded

4-core 3.07GHz Intel Xeon W3550



Lots of useful libraries

4-core 3.07GHz Intel Xeon W3550



Basic transaction support

ScalaSTM
Scala
JVM

4-core 3.07GHz Intel Xeon W3550



Abstract locks, undo logs, etc....

Proust Boosting Library
ScalaSTM
Scala
JVM

4-core 3.07GHz Intel Xeon W3550



Benchmarks

JVM with JIT turned off

3 cores (1 more reserved for GC)

Single-benchmark blocks
Mixed-benchmark blocks

Tunable Conflict rate




Ballot
From Solidity documentation

Voters register, vote

Benchmark: all voters registered, vote only

Tunable Conflict = double voting



Ballot Speedups
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Ballot Speedups
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SimpleAuction

From Solidity documentation

Bidders bid, request refunds when over

Tunable Conflict = bidPlusOne() vs refund



SimpleAuction Speedups
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SimpleAuction Speedups

2.5 - Miner O ] 25
T~ Validator A

Speedup Over Serial
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Conflict Percentage (200 Transactions)

Varying Levels of Conflict




Tracks Document Metadata (including owner)

Tunable Conflict = transfer vs query



EtherDoc Speedups

2.5 |- Miner O _A 5 5
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EtherDoc Speedups
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All of the above

Equal proportions



Mixed Speedups

2.9 [~ Miner O - 25
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Mixed Speedups
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Conclusions

Speculation speeds up mining when ...

L W B B i I‘i“



Future Work

ined concurency?

Finer-gra




