To Appear at PODC 2017

ack
con®r?

ents .-

e v

Jan. 1,

lan. .

= APP et

Jan. 8, 20X3
lan. 10, 20X3

Jan. 12, 20X3

Abstraction:
Distributed Ledger

Balancefs
] n\\l i
d oaaru

Paid rent

Faid bills
Paid tax

Collected receivable

50,000
60,000
65 000
58,000
55,000

59 000

Implementation: Blockchain

this this
happened happened

hashes & hashes &

signatures signatures

Implementation: Blockchain

Tamper-proof

hashes & hashes &
signatures signatures

T_"

ef e

0.7/0.8 fork Slocksi-.
1 & fork 27K

yersion
$5AM DAO theft

V& ' \;L/,?,‘

- =
-_— —

‘I Permissioned Blockchains

Discussion assumes permissionless
because more challengmg

Opinion: likely to have more pervasive influence

Miners ...

=

Validators ...

send transactions ...

‘ to miners.

*
*

Miners ...

&

assemble transactions ... Into blocks.

C

do distributed consensus to nick one block ...
Agnostic about how.

end of

blockchain
consensus to append to the

winnner blockchain.

¢ Other miners, clients, caches ...

end of
blockchain

check hashes, signatures

OK, we left out some detalls ...

Rube Goldbergls2
Inventions .

Smart Contracts

“Computer protocols that faC|I|tate verify, or
enforce the negotiation or performance of

a contract, or that make a contractual
clause unnecessary” (W|k|ped|a) NG

ﬁl_lﬁ -
e Ll
el

s
T e b -

ol 4 u ll‘ﬁ-‘l' -
i 0 T

=
—— P :
‘_!"_:lll'l. et P

Ledger + Turlng complete scrlptmg Ianguage’)

RPN B DN i\
: L Howt ; STy % } 5

i -t 3 .."':e b =
H Ly o8 "i'—' h 1k i it EE '
R o e e B ' AT Al iy f -

! o L ;!' :.:' A :-_] + ! y L Lo o]
-.: :-\-':- : :w B !.||I -L (! At 1 i - p
ey 2 | ifl ET e i
il !l\f.. 1 : ::'i : i x
7

&m!!nhﬁ

!

e

RIS
F-i

L T PA .
T pe—

J -

=
=D
A e+ A Y

contract Ballot {
mapping(address => Voter)
public voters;
.. // more state decls
function vote(uint proposal)
Voter sender = voters[msg.sender];
if (sender.voted)
throw;

sender.voted = true;
sender.vote = proposal;

proposals[proposal].voteCount
+= sender .welight;

Looks like an object in a language

Art of Multiprocessor Programming

mapping(address => Voter)
public voters;
.. // more state decls
furjctiop”vote(uint proposal)
¥ sender = voters|[msg.sender];
1T (sender.voted)

Long-lived state

=rer—vored = true;

Built-in data types: maps, arrays, scalars.

contract Ballot {
mapping(address => Voter)
public voters;

-nder.voted)

Functions to manipulate state

sender.vote = proposal;

\Vote for a partlcular proposal [P tecount

e, =) -

}

contract Ballot {

mapping(address => Voter)
public voters;
.. // more state decls
[0] vOLE L ULl DY OpPOSc
Voter sender = voters[msg.sender]

sender.voted = true;
sender.vote = propo

proposals|[proposal]

+= sender.welight;

contract Ballot {

mapping(address => Voter)

public voters;

.. // more state decls
function vote(uint proposal)

= afers[msg.sender];
if (sender.voted)
throw;

proposals[pr&ppsal].voteCount
+= sender.weyLght;

No voting twice

contract Ballot {
mapping(address => Voter)
public voters;

. // more state (e
function vote(uint 1
Voter sender = voters|mg4y.sender];

1f (sender.voted)
throw;

rue;

sender.vote = proposal;

proposals[proposal].voteCount
+= sender .welight;

Miners assemble contracts ...

Miners assemble contracts ...

Apply them one-at-a-time to compute new state

state state state » -

Block has contracts & new state

Blocks include
contracts & states

Validators replay all block contracts in order ...

¢
state state state » -

Validators replay all block contracts in order ...

:

... for every block

Contracts re-executed for How Long?

Contracts re-executed for How Long?

fo rever

bl

i !

L]

E
.' o '|‘
Ty R | &
A L ‘ [
3 .l 1 4 s \ .
) k[v | . 'J.' .
P - |II i ’ H
¥ i S o
1-I ¥
’ - rf..-"‘

Every validator eventually executes every contract

Contracts re-executed for How Long?

sequentially

Execute block’s contracts sequentially

Paid by client per step

High latency = competitive disadvantage

Validators ...

Execute every block’s contracts sequentially

Every validator, every contract, forever

Why Is sequential execution so wrong?

Poor throughput | IS est s el g =

Competitive disadvantage for miners

Cannot exploit multicore

Naive Concurrency?

Inconsistent shared state B

- ﬂ".__

Voters could vote twice

Add explicit concurrency to the language?

That reminds me of a story ...

Invests in other businesses: ahout $50 Million capital
In Ether cryptocurrency

No managers or board of directors
\ N

Controlled by smart contacts and investor voting

on-
n"‘ 'DFn i

“‘code Is law”

S

t
Whag > S
G ck;a- E D : e :
oo Much hyperventilation about possible
e future of finance

———

Schematic DAO Code

function withdraw(uint amount) {
client = msg.sender;
1f (balance[client] >= amount} {

1f (client.call.sendMoney(amount)) {
balance[client] -= amount;

138,

Art of Multiprocessor Programming

Schematic DAO Code

function withdraw(uint amount) {

Client wants to transfer own money

Art of Multiprocessor Programming

Schematic DAO Code

client = msg.sender; -

Which client?

Art of Multiprocessor Programming

Schematic DAO Code

if (balance[client] >= amount} { -

Does client have enough money?

Art of Multiprocessor Programming

Schematic DAO Code

1f (client.call.sendMoney(amount

Transfer the money by calling another contract ...

Art of Multiprocessor Programming

function withdraw(uint amount) {
client = msg.sender;
if (balance[client] >= amount} {
1f (client.call.sendMoney(amount
balance[client] -= amount;

133,

Transfer the money by calling another contract ...

function sendMoney(uint amount) {
balance += amount
msg.sender.call. transfer (amount)

1f (client.call.sendMoney(amount ,

| &

Credit account

balance += amount

function withdraw(uint amount) {
client = msg.sender;
if (balance[client] >= amount} {
1f (client.call.sendMoney(amount ,
balance[client] -= amount;

11}

| &

Client makes re-entrant withdraw request!

function sendMoney(uint amount) {
balance += amount
msg.sender.call.withdraw(amount) -

¥

function withdraw(uint amount) {
client = msg.sender;
1f (balance[client] >= amount} {
1f (client.call.sendMoney(amount ,
balance[client] -= amount;

33}

| &

msg.sender.call.withdraw(amount)

function withdraw(uint amount) {
client = msg.sender;
if (balance[client] >= amount} { -
i1f (client.call.sendMoney(amount ;
balance[client] -= amount;

133,

Second time around, balance still looks OK ...

function sendMoney(uint amount) {
balance += amount
msg.sender.call.withdraw(amount)

function withdraw(uint amount) {
client = msg.sender;
if (balance[client] >= amount} {
if (client.call. sendMoney(amounh
balance[client] -= amount;

133,

Send money again ...

and again and again ...

function sendMoney(uint amount) {
balance += amount
msg.sender.call.withdraw(amount) -

¥

_ =y] c
: 'Eherﬂun hag
o QUDD® ODpeq dra, lat;
1Ly -
o |f;fl i [_\jﬂ.‘o.'p;l PC}ad D allljd
GILL (ale i \
anal s P
52% Lk
mal

1 m‘afh
an
af CUf

APpa
wer Attacy.
it eV mot
—yner Wit y atme
e
(Tell
pol

iX?
| fix"
ra:;gen‘n, The
o oz'gauisafj ‘
greli =
¢ Ul e i } i
-|\'IILI'-:II-L-:l @
N

3
e
A — ; it
On Wien f}uge
mfdmgs 3
of t IE:T[-'rj;\.':‘fr'el
= ng - £y’
3 AT
itoilig thoS
| . §
- (=
NE

gel Cast™ in 3V
haer >

Because concurrency is hard = .« .
, I.:),_,_ . 4707 TR8 e = -.. =
End of digression. .. “*

712284

Please pop your stacks.

Concurrency via
Static Analysis?

e conflict, so it’s safe to run
L them concurrently

These contracts never

Concurrency via
Static Analysis?

B
,&
§ .
Undecidable in theory & Intractable in practice

These contracts never
conflict, so it’s safe to run

them concurrently

Because contracts call other contracts ...

iy, T 3

v

Dynamic call graph ...
FAG

ight have to Inspect every contract ever

, L =

Transactions

ot
0 |.L"‘-'~|..'| .
et Me Joiee
-y

Confl
ict?
Block
0
r roll ba
Ck
'|~ o
"hn". gpot®s
et
\ 2 mPVE ﬁu.ul.hp‘l.-:,.
enmw.'u'_ :
o W e ol VF .
- = 'nhl-.‘-‘|'u: ds. !

i *-u.'ﬂ-'LCJ oy ik
AW v RO

.'I. 1:'11. e T
e Ao\ o
s, WE neat)
= oY 1) R g &N ey —
o e Lanes o L ol
L wM'L'rcL-.m L et .
- ere W y
J it vt A 5 '}lidk.l X
- o= e .1':\'.1.';'-;.3 Suph™
i W g WY pact yish DA%
ke pert e W s are
i e e v W i g

y 1 A A 1:-:.','.-."9. oW
Tt itk .-‘~.-.--._'u.ml.\-.
P L] st uw."u: LR i
i mw.u.hn-n A
"r-'-'l 4 b Ly
I.'|1|l'|"ﬂ:l‘ =

Eq :

u

Selr\ilslent -
| exeCUtig’:e

1.\.~h.'l.-.f .

S et L7 Aoy

A -.'u'n.c i ne i
14 -.'n.'.w‘u:'ln:'

balance[“Alice”] += sSuu

Miner thread

TMW April 2010

balance[“Alice”] += sum

Abstract lock for “Alice”

TMW April 2010

balance[“Alice”] = newBal:

Blocks operations that do not commute

TMW April 2010

balance[“Alice”] += sum

Abstract lock for “Alice”

@ﬂ 6 Abstract lock for “Bob”

balance[“Bob”] = newBal

Allow concurrent operations that do commute

TMW April 2010

balance[“Alice”] += sum

Abstract lock for “Alice”

ibalance

4 4 A 4

Undoes updates to “Alice” only

TMW April 2010

balance[“Alice”] += sum

Abstract lock for “Alice”

I balance[“Alice”]

e

D Carry out operation

TMW April 2010

Success (commit)

balance[“Alice”] += sum

Release lock

ibalance

TMW April 2010

Failure (abort)

balance[“Alice”] += sum

Release lock

ibalance
-;
--

TMW April 2010

L

Conflict resolution means delay
Delay = competitive disadvantage vs rivals

Not paid for aborted steps

Benefits to miners

Low conflict means low latency
Low latency = competitive advantage vs rivals

Lower energy, better HW usage, etc.

Validators

Cannot mimic miners

Because parallel executions non-deterministic

Might find a different serializable schedule

| have posted my serializable
concurrent schedule for
these contracts in the block!

Replay miner’s schedule

Replay miner’s schedule

v/

Checkable

No locks or synchronization

Work-stealing for flexibility

Locks track number
of times acquired

Use: O

fem 4

fia

i

Threads track use
counts seen

I !! parallel

Can reconstruct
“*happens-before” graph

lenuanbas

Fork-Join Parallelism

Similar to CILK model

7 Easy to schedule
efficiently

Can check validity

O
.\l No locks, undo, etc.

?

— r S . -é,l i R L

Why should | share =
my highly-parallel
schedule with
. rivals?

i Ty

Bigger rew

ard for more parallel schedule

Avalilable hardware

4-core 3.07GHz Intel Xeon W3550

Ethereum VM not multithreaded

4-core 3.07GHz Intel Xeon W3550

Lots of useful libraries

4-core 3.07GHz Intel Xeon W3550

Basic transaction support

ScalaSTM
Scala
JVM

4-core 3.07GHz Intel Xeon W3550

Abstract locks, undo logs, etc....

Proust Boosting Library
ScalaSTM
Scala
JVM

4-core 3.07GHz Intel Xeon W3550

Benchmarks

JVM with JIT turned off

3 cores (1 more reserved for GC)

Single-benchmark blocks
Mixed-benchmark blocks

Tunable Conflict rate

Ballot
From Solidity documentation

Voters register, vote

Benchmark: all voters registered, vote only

Tunable Conflict = double voting

Ballot Speedups

2.5 I~ Miner O -1 25
Validator A

Speedup Over Serial

0 | | | | | | | 0
0 50 100 150 200 250 300 350 400

Number of Transactions (15% Conflict)

Varying Transactions per Block

Ballot Speedups

2.5 I Miner O] 25
T Validator A
) 2 -
¥, P~
S 156 s
O
S
e 1 1
@
QO
o
2 0.5 — 0.5
0 | | | | 0
0 0.2 0.4 0.6 0.8 1

Conflict Percentage (200 Transactions)

Varying Levels of Conflict

SimpleAuction

From Solidity documentation

Bidders bid, request refunds when over

Tunable Conflict = bidPlusOne() vs refund

SimpleAuction Speedups

2.5 - Miner O -1 2.5
= Validator A2 D
> - AR 5 2
2 —+ 15
@)
(el
-
T 1
Q
QO
o
w — 0.5
0 | | | | | | | 0

0 50 100 150 200 250 300 350 400

Number of Transactions (15% Conflict)

Varying Transactions per Block

SimpleAuction Speedups

2.5 - Miner O] 25
T~ Validator A

Speedup Over Serial

0 | | | | 0
0 0.2 0.4 0.6 0.8 1

Conflict Percentage (200 Transactions)

Varying Levels of Conflict

Tracks Document Metadata (including owner)

Tunable Conflict = transfer vs query

EtherDoc Speedups

2.5 |- Miner O _A 5 5
Validator A ______ﬁ____f---,r’-»_____&_____----
°r : 12

Speedup Over Serial
o
|
o

100 150 200 250 300 350 400

Number of Transactions (15% Conflict)

Varying Transactions per Block

EtherDoc Speedups

o '-.____ﬁ_______f-\—— —

Miner
A Validator

e -,

T

e,
A

O
A

Speedup Over Serial

0.2 0.4 0.6 0.8

Conflict Percentage (200 Transactions)

Varying Levels of Conflict

All of the above

Equal proportions

Mixed Speedups

2.9 [~ Miner O - 25
Validator 4

Speedup Over Serial

0 | | I I | | | 0
0 50 100 150 200 250 300 350 400

Number of Transactions (15% Conflict)

Varying Transactions per Block

Mixed Speedups

o5 L Miner O] 2.5

= Validator A

= Y e C— . T 2

g °F @\@ A

2 15 9\6\5 "

o

Q.

s -

@

D

o

3 05 L — 0.5
0 | | | | 0

0 0.2 0.4 0.6 0.8 1

Conflict Percentage (200 Transactions)

Varying Levels of Conflict

Conclusions

Speculation speeds up mining when ...

L W B B i I‘i“

Future Work

ined concurency?

Finer-gra

